Abstract:
A terminal box includes a box body having a bottom portion, a terminal portion fixed to the box body, a pressing portion, a holding portion and a slide mechanism The bottom portion has an opening portion capable of receiving a terminal inserted therein from the outside. The terminal portion is capable of establishing electric conduction between the terminal portion and the terminal upon contact therewith. The pressing portion is switchable between a contacting state in which the pressing portion clamps the terminal with the terminal portion for establishing electric conduction between the terminal portion and the terminal and a spaced state spaced apart from the terminal portion. The holding portion holds the pressing portion integrally and is slidable on the box body in the direction of movement of the pressing portion to/away from the terminal portion.
Abstract:
A connecting device of the present invention includes a contact and a body which accommodates it. Clamp arms of the contact include bent parts, and hold parts continued from the tips of the bent parts and bent opposite to the bent parts. When piece members of the operation member press the bent parts, the hold parts approach each other and intersect to thereby form a space between them. When the press is released, the hold parts approach each other to thereby close the space, whereby the lead terminal inserted in the space is held between the hold parts.
Abstract:
There is provided a component for machine structure having a hardened layer through an induction hardening in at least a part thereof, and more improving fatigue strengths as compared with the conventional ones, in which the hardened layer has a hardness Hv of not less than 750 and an average grain size of prior austenite grains is not more than 7 μm over a full thickness of the hardened layer.
Abstract:
The present invention has an object to provide an optical device capable of leading out a light propagated through an optical waveguide to a desired substrate side face while maintaining the sufficient power of the light, within a range of limited substrate size. To this end, according to the optical device of the present invention, a groove is formed in the vicinity of an end portion on the optical output side of the optical waveguide, on the substrate on which the optical waveguide is formed, a side wall of the groove is used as a reflecting plane, the light output from the optical waveguide is reflected by the reflecting plane, and the reflected light is emitted from the desired substrate side face.
Abstract:
A connecting device of the present invention includes a contact and a body which accommodates it. Clamp arms of the contact include bent parts, and hold parts continued from the tips of the bent parts and bent opposite to the bent parts. When piece members of the operation member press the bent parts, the hold parts approach each other and intersect to thereby form a space between them. When the press is released, the hold parts approach each other to thereby close the space, whereby the lead terminal inserted in the space is held between the hold parts.
Abstract:
A connecting device of the invention includes a contact for electrically connecting with a lead terminal of cold cathode fluorescent lamp (electronic component), a body for accommodating the contact and having an insertion opening to allow the lead terminal to be inserted/removed from a side of the body, a shutter for opening/closing the insertion opening of the body, and an operation member mounted to the body for operating the open/close of the shutter.
Abstract:
A connecting device of the invention includes a contact for electrically connecting with a lead terminal of cold cathode fluorescent lamp (electronic component), a body for accommodating the contact and having an insertion opening to allow the lead terminal to be inserted/removed from a side of the body, a shutter for opening/closing the insertion opening of the body, and an operation member mounted to the body for operating the open/close of the shutter.
Abstract:
The present invention has an object to provide an optical device capable of leading out a light propagated through an optical waveguide to a desired substrate side face while maintaining the sufficient power of the light, within a range of limited substrate size. To this end, according to the optical device of the present invention, a groove is formed in the vicinity of an end portion on the optical output side of the optical waveguide, on the substrate on which the optical waveguide is formed, a side wall of the groove is used as a reflecting plane, the light output from the optical waveguide is reflected by the reflecting plane, and the reflected light is emitted from the desired substrate side face.