摘要:
An example embodiment of the present invention provides a process relating to the selective filtering of an LSA at a not-so-stubby-sub-area (NSSSA) border router. In one embodiment, the border router receives an LSA from another router inside the NSSSA, which might be in the access layer of the hierarchical network design model and which might use OSPF as its IGP. If the LSA is Type 1 and includes a subnet route or forwarder address, the border router floods it to its neighboring routers, regardless of whether they are inside the NSSSA. If the LSA is Type 7 and includes a host address, the border router floods it to a neighboring router if the neighboring router is inside the NSSSA, but filters the LSA if the neighboring router is outside the NSSSA, for example, in an OSPF area in the distribution layer of the hierarchical network design model.
摘要:
An example embodiment of the present invention provides a process relating to the selective filtering of an LSA at a not-so-stubby-sub-area (NSSSA) border router. In one embodiment, the border router receives an LSA from another router inside the NSSSA, which might be in the access layer of the hierarchical network design model and which might use OSPF as its IGP. If the LSA is Type 1 and includes a subnet route or forwarder address, the border router floods it to its neighboring routers, regardless of whether they are inside the NSSSA. If the LSA is Type 7 and includes a host address, the border router floods it to a neighboring router if the neighboring router is inside the NSSSA, but filters the LSA if the neighboring router is outside the NSSSA, for example, in an OSPF area in the distribution layer of the hierarchical network design model.
摘要:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.
摘要:
Each router in a network is configured for generating router advertisement messages according to a flooding distance vector routing protocol. Each router advertisement message output according to the flooding distance vector routing protocol includes reachability information for at least one destination, and an originating router identifier indicating a router having originated the reachability information. If any router receiving the router advertisement message detects a match between the originating router identifier and the corresponding assigned router identifier, the received router advertisement message is disregarded during calculation of the best paths from the network. If the originating router identifier identifies another router, the router floods the received router advertisement message to other ports, and output its own router advertisement message based on the received router advertisement message and that specifies the originating router identifier from the received router advertisement message.
摘要:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
摘要:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
摘要:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.