摘要:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.
摘要:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
摘要:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
摘要:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.
摘要:
An IPv4 host is able to maintain connectivity within an access network while moving among access points of the access network, based on receiving a unique assigned IPv4 address from a clusterhead of the access network. Any DHCP request by the IPv4 host is sent via the connecting access point to the clusterhead. The clusterhead, providing connectivity for hosts in the access network to a wide area network based on respective entries, assigns the IPv4 address to the IPv4 host, based on storing an entry including the IPv4 address and an IP-based identifier of the connecting access point, and sends a DHCP response to the IPv4 host via the connecting access point. A second DHCP request from the IPv4 host to a second access point causes the clusterhead to update the entry with the second access point identifier, enabling the IPv4 host to continue use of the assigned IPv4 address.
摘要:
A method and system for remotely configuring and/or provisioning a device that is nonoperational is provided. The device may be, in general, any electronic device that includes at least one setting (“device setting”) that can be programmatically or otherwise established or adjusted to configure and/or provision the device for its operation. The method includes detecting, via a radio frequency identification (“RFID”) tag, a state of a device that is communicatively coupled to the RFID tag; and providing the device setting via the RFID tag when the state signifies that the device is nonoperational.
摘要:
In one embodiment, a method comprises an Internet Protocol (IP) router receiving sensor data from at least one of a second IP router or an attached host sensor node, the sensor data distinct from link data of a network link; the IP router generating sensor information based on storing the sensor data with metadata describing reception of the sensor data by the IP router in a routing information base; and the IP router executing a routing operation based on the sensor information stored in the routing information base.
摘要:
In one embodiment, a method includes, in each of a plurality of mesh access points, connecting to one of a plurality of mesh controllers in a mesh network and passing connection information to the one mesh controller. The mesh access points include a wired mesh access point having a wired connection to the one mesh controller, and wireless mesh access points having a wireless connection to the one mesh controller via the wired mesh access point. The method also includes generating, in each mesh controller, a corresponding link state table based on the passed connection information from each corresponding connected mesh access point. The method also includes generating in at least one of the mesh controllers a mesh table, identifying all of the connecting links for the mesh access points connected among the mesh controllers, based on the mesh controllers sharing the respective link state tables.
摘要:
In one embodiment, a sensor device in a network detects an alarm condition. The sensor device generates an alarm message based on the detected alarm condition and waits for a delay whose length is inversely proportional to a distance between the sensor device and a downstream destination device for which the alarm message is destined. During the delay, the sensor device receives one or more additional alarm messages from one or more upstream sensor devices. The sensor device coalesces the one or more received alarm messages from the one or more upstream sensor devices with the alarm message generated at the sensor device, to form a coalesced alarm message, and transmits the coalesced alarm message downstream towards the downstream destination device, after expiration of the delay.
摘要:
Each mobile router in an ad hoc mobile network is configured for concurrently attaching to multiple parents advertising respective parent depths relative to a clusterhead of the ad hoc mobile network. The mobile router selects an advertised depth relative to the clusterhead based on adding a prescribed increment to a maximum one of the parent depths, enabling the mobile routers to form a directed acyclic graph relative to the clusterhead. Each mobile router sends to each of its parents a neighbor advertisement message specifying at least one reachable prefix, a corresponding cost for reaching the reachable prefix, and a corresponding sequence identifier that enables the parents to validate the neighbor advertisement message relative to stored router entries. Hence, mobile routers automatically can form a directed acylic graph relative to the clusterhead, and can distribute routing information with minimal overhead.