摘要:
A pixel structure includes a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, a common line, and a first capacitance upper electrode. The first and the second data lines intersect the scan line. The common line is parallel to the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. A difference between a first voltage of the first pixel electrode and a second voltage of the second pixel electrode constitutes a driving electric field to drive a display medium. The first capacitance upper electrode is electrically connected to the first pixel electrode and located above the common line to form a first storage capacitor.
摘要:
A pixel structure including a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, and a common electrode is provided. The first data line and the second data line are respectively intersected with the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. The common electrode is located under the first pixel electrode and the second pixel electrode. Both a first voltage of the first pixel electrode and a second voltage of the second pixel electrode are different from a third voltage of the common electrode.
摘要:
A pixel structure including a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, and a common electrode is provided. The first data line and the second data line are respectively intersected with the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. The common electrode is located under the first pixel electrode and the second pixel electrode. Both a first voltage of the first pixel electrode and a second voltage of the second pixel electrode are different from a third voltage of the common electrode.
摘要:
A pixel structure includes a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, a common line, and a first capacitance upper electrode. The first and the second data lines intersect the scan line. The common line is parallel to the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. A difference between a first voltage of the first pixel electrode and a second voltage of the second pixel electrode constitutes a driving electric field to drive a display medium. The first capacitance upper electrode is electrically connected to the first pixel electrode and located above the common line to form a first storage capacitor.
摘要:
An electrowetting display device includes an electrowetting display panel and an illumination unit. The electrowetting display panel includes two or more different optical color-converting liquid layers and a plurality of light-shielding liquid layers. The two or more different optical color-converting liquid layers are able to convert the light source generated by the illumination unit into light beams having two or more different colors of desired grey scales. The light-shielding liquid layers can be driven to change the transmittance of display regions so as to implement switch between transparent display mode, non-transparent display mode and semi-transparent display mode.
摘要:
An electro-wetting display device includes a light guide plate having a light incident surface and a light output surface, a light source, a transparent electrode, a dielectric layer, a transparent non-polar solution layer, a counter substrate, a light emitting material layer, a counter electrode layer and a transparent polar solution layer. The light source is disposed near the light incident surface. The transparent electrode layer is disposed on the light output surface. The dielectric layer covers the transparent electrode layer and has refractive index n1. The transparent non-polar solution layer is disposed on the dielectric layer and has refractive index n2, and n2≧n1. The counter substrate is disposed above the transparent non-polar solution layer. The light emitting material layer and the counter electrode are disposed on the counter substrate. The transparent polar solution layer is disposed between the counter substrate and the light guide plate.
摘要:
A pixel structure, which may be used in a liquid crystal display panel, includes a plurality of display pixel units and a plurality of control devices. Each of the display pixel units includes a first sub-pixel adapted to provide a first color, a second sub-pixel adapted to provide a second color, a third sub-pixel adapted to provide a third color, a first white sub-pixel, a second white sub-pixel, and a third white sub-pixel. Each of the control devices is employed for respectively controlling each of the sub-pixels. The liquid crystal display panel is normally white when the first sub-pixel, the second sub-pixel, the third sub-pixel, the first white sub-pixel, the second white sub-pixel, and the third white sub-pixel are not driven by the control devices.
摘要:
An electro-wetting display device includes a light guide plate having a light incident surface and a light output surface, a light source, a transparent electrode, a dielectric layer, a transparent non-polar solution layer, a counter substrate, a light emitting material layer, a counter electrode layer and a transparent polar solution layer. The light source is disposed near the light incident surface. The transparent electrode layer is disposed on the light output surface. The dielectric layer covers the transparent electrode layer and has refractive index n1. The transparent non-polar solution layer is disposed on the dielectric layer and has refractive index n2, and n2≧n1. The counter substrate is disposed above the transparent non-polar solution layer. The light emitting material layer and the counter electrode are disposed on the counter substrate. The transparent polar solution layer is disposed between the counter substrate and the light guide plate.
摘要:
A pixel structure, which may be used in a liquid crystal display panel, includes a plurality of display pixel units and a plurality of control devices. Each of the display pixel units includes a first sub-pixel adapted to provide a first color, a second sub-pixel adapted to provide a second color, a third sub-pixel adapted to provide a third color, a first white sub-pixel, a second white sub-pixel, and a third white sub-pixel. Each of the control devices is employed for respectively controlling each of the sub-pixels. The liquid crystal display panel is normally white when the first sub-pixel, the second sub-pixel, the third sub-pixel, the first white sub-pixel, the second white sub-pixel, and the third white sub-pixel are not driven by the control devices.
摘要:
An electrowetting display device includes an electrowetting display panel and an illumination unit. The electrowetting display panel includes two or more different optical color-converting liquid layers and a plurality of light-shielding liquid layers. The two or more different optical color-converting liquid layers are able to convert the light source generated by the illumination unit into light beams having two or more different colors of desired grey scales. The light-shielding liquid layers can be driven to change the transmittance of display regions so as to implement switch between transparent display mode, non-transparent display mode and semi-transparent display mode.