摘要:
We describe a system for electric field assisted magnetic recording where a recordable magnetic medium includes a magnetic recording layer of high coercivity and vertical magnetic anisotropy that is adjacent to an electrostrictive layer which can be placed in a state of stress by a electric field or which is already pre-stressed and which pre-stress can be turned into strain by an electric field. When the magnetic medium is acted on simultaneously by a magnetic writing field and an electric field, the stress in the electrostrictive layer is transferred to a magnetostrictive layer which is the magnetic recording layer by itself or is coupled to the magnetic recording layer, whereupon the magnetic recording layer is made more isotropic and more easily written upon. Residual stresses in the electrostrictive layer can then be removed by an additional electric field of opposite sign to the stress-producing field.
摘要:
We describe a system for electric field assisted magnetic recording where a recordable magnetic medium includes a magnetic recording layer of high coercivity and vertical magnetic anisotropy that is adjacent to an electrostrictive layer which can be placed in a state of stress by a electric field or which is already pre-stressed and which pre-stress can be turned into strain by an electric field. When the magnetic medium is acted on simultaneously by a magnetic writing field and an electric field, the stress in the elctrostrictive layer is transferred to a magnetostrictive layer which is the magnetic recording layer by itself or is coupled to the magnetic recording layer, whereupon the magnetic recording layer is made more isotropic and more easily written upon. Residual stresses in the electrostrictive layer can then be removed by an additional electric field of opposite sign to the stress-producing field.
摘要:
A magnetic head includes a pole layer and a shield. The shield includes a shield layer having a front end face located in the medium facing surface at a position forward of an end face of the pole layer along a direction of travel of the recording medium. The magnetic head further includes a stopper layer for suppressing protrusion of the front end face of the shield layer, the stopper layer being disposed adjacent to the shield layer and made of a nonmagnetic material having a linear thermal expansion coefficient of 5×10−6/° C. or smaller at a temperature of 25° C. to 100° C.
摘要:
A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
摘要:
A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
摘要:
A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
摘要:
A magnetic head includes a pole layer and a shield. The shield includes a shield layer having a front end face located in the medium facing surface at a position forward of an end face of the pole layer along a direction of travel of the recording medium. The magnetic head further includes a stopper layer for suppressing protrusion of the front end face of the shield layer, the stopper layer being disposed adjacent to the shield layer and made of a nonmagnetic material having a linear thermal expansion coefficient of 5×10−6/° C. or smaller at a temperature of 25° C. to 100° C.
摘要:
A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
摘要:
A vertically stacked DFH design in a read/write head is disclosed that allows independent control of write gap protrusion and read gap protrusion. A first heater is formed in an insulation layer proximate to a sensor in a read head. A second heater is formed in a second insulation layer proximate to the write pole tip in a main pole layer. The two heaters are connected in series or in parallel through leads to a power source that activates the heaters. In one embodiment, the heaters have a fixed resistance ratio. Preferably, there are two drivers in the power source so that a first power can be applied to the first heater and a second power can be applied to the second heater to enable an adjustment of reader protrusion/writer protrusion or gamma ratio. Fast reader and writer actuation is achieved and low power consumption is realized.
摘要:
A vertically stacked DFH design in a read/write head is disclosed that allows independent control of write gap protrusion and read gap protrusion. A first heater is formed in an insulation layer proximate to a sensor in a read head. A second heater is formed in a second insulation layer proximate to the write pole tip in a main pole layer. The two heaters are connected in series or in parallel through leads to a power source that activates the heaters. In one embodiment, the heaters have a fixed resistance ratio. Preferably, there are two drivers in the power source so that a first power can be applied to the first heater and a second power can be applied to the second heater to enable an adjustment of reader protrusion/writer protrusion or gamma ratio. Fast reader and writer actuation is achieved and low power consumption is realized.