Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications
    1.
    发明授权
    Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications 失效
    通过使用溶胶凝胶技术处理超级电容器应用纳米结构氮化物,碳氮化物和碳氮氧化物电极材料的方法和产品

    公开(公告)号:US06168694A

    公开(公告)日:2001-01-02

    申请号:US09244815

    申请日:1999-02-04

    IPC分类号: C25B1100

    CPC分类号: H01G9/155 Y02E60/13

    摘要: Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m2/g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725° C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

    摘要翻译: 通过使用溶胶 - 凝胶法制备具有高表面积(高达150m 2 / g)的金属氮化物,碳氮化物和碳氮氧化物粉末。 首先合成金属有机前体,醇盐或酰胺。 通过使用不可水解的有机配体或模板来修饰金属有机前体。 然后通过水解和缩合过程形成湿凝胶。 然后将湿凝胶中的溶剂超临界除去以形成多孔无定形氢氧化物。 将该多孔氢氧化物材料在氨流下烧结至725℃,形成多孔氮化物粉末。 获得高表面积氮化物,碳氮化物和碳氮氧化物粉末的另一种方法是在惰性气氛中热解聚合的模板化金属酰胺气凝胶。 通过使用溶胶 - 凝胶制备的氮化物,碳氮化物和碳氮氧化物粉末制备电化学电容器。 使用两种方法来组装电容器。 电极通过将氮化物粉末和粘合剂的混合物压制成箔,或者通过在金属集电体上沉积电极涂层而形成。 在热处理后,粘合剂或涂层被转化成电极材料的连续网络,以提供增强的能量和功率密度。 将液体电解质浸入多孔电极中。 电化学电容器组件还在两个电极/电解质之间具有多孔隔离层,并形成单电池。