摘要:
An inflow port and an outflow port of a bypass passage have openings on a front surface near a projecting end and on a bottom surface, respectively, of a bypass passage forming member. A recess portion is disposed on the front surface of the bypass passage forming member on a circuit housing portion side of the inflow port so as to extend at a predetermined depth over an entire region in a longitudinal direction of a short side of a rectangular cross section of the bypass passage forming member.
摘要:
An inflow port and an outflow port of a bypass passage have openings on a front surface near a projecting end and on a bottom surface, respectively, of a bypass passage forming member. A recess portion is disposed on the front surface of the bypass passage forming member on a circuit housing portion side of the inflow port so as to extend at a predetermined depth over an entire region in a longitudinal direction of a short side of a rectangular cross section of the bypass passage forming member.
摘要:
An inflow port and an outflow port of a bypass passage have openings on a front surface near a projecting end and on a bottom surface, respectively, of a bypass passage forming member. A recess portion is disposed on the front surface of the bypass passage forming member on a circuit housing portion side of the inflow port so as to extend at a predetermined depth over an entire region in a longitudinal direction of a short side of a rectangular cross section of the bypass passage forming member.
摘要:
The flow rate measuring apparatus includes a connector portion, a main body portion, a bypass passage, a flow rate sensing element having a flow rate detection portion, a control circuit, a pair of metal terminals having end portions connected to a connector, embedded portions molded integrally with a resin portion constituting the main body portion, and exposed portions exposed in the main passage, which are connected to each other in a cascade manner, and a fluid temperature sensing element having a temperature sensing portion. The fluid temperature sensing element is arranged at a position apart from an outer wall surface of a side face of the bypass passage, and the temperature sensing portion is arranged at the center between the pair of metal terminals that are exposed in the main passage by the same length or between extension lines thereof.
摘要:
In a flow rate measuring device including a bypass channel having at least one bending portion and at least one channel portions, a detecting element is disposed in the bypass channel to detect the flow rate of measurement target fluid, a ratio L/H of a width H of the channel portion in which the detecting element is disposed, and a distance L from the bending portion at the upstream side of the detecting element to the upstream end portion of the detecting portion is set in range from 0 to 0.7, and a ratio D/H of a distance D from the wall surface of the base side of the detecting element to the center of the detecting portion of the surface of the detecting element and the width H of the channel portion is set in the range from 0.22 to 0.33.
摘要翻译:在包括具有至少一个弯曲部分和至少一个通道部分的旁通通道的流量测量装置中,检测元件设置在旁路通道中以检测测量对象流体的流量,宽度的比率L / H 设置有检测元件的通道部分的距离L和从检测部件的上游侧的弯曲部到检测部的上游端部的距离L设定在0〜0.7的范围内, 从检测元件的底侧的壁面到检测元件的表面的检测部分的中心的距离D和通道部分的宽度H的距离D的D / H设定在0.22至0.33的范围内 。
摘要:
Provided is a flow rate measuring apparatus which suppresses deformation of a base main body due to vibration of a pipe so as to be able to reduce occurrence of disconnection of wires due to the vibration of the pipe. The flow rate measuring apparatus includes a bonding portion (16) corresponding to a deformation suppression portion provided between an inner wall surface (17a) of a flange (17) of a base (11) and an outer circumferential wall surface (6a) of a cover (6) covering a circuit board (5), which is opposed to the inner wall surface (17a), for connecting the flange (17) and the cover (6) to suppress the deformation of a base main body (32) of the base (11) due to vibration of an intake pipe (50).
摘要:
Provided is a flow rate measuring apparatus which prevents a reduction in flow-rate detection accuracy through reducing stress applied to a flow rate detection element. The flow rate measuring apparatus includes a support member (8) provided with a stepped portion (9) formed between a region facing a circuit board (5) and a region facing a detection portion of a flow rate detection element (3), in which the support member (8) includes a groove portion (11a) provided on a side opposite to an insertion hole (2) with respect to the region facing the detection portion, for reducing stress applied to the flow rate detection element (3).
摘要:
In a flow rate measuring device including a bypass channel having at least one bending portion and at least one channel portions, a detecting element is disposed in the bypass channel to detect the flow rate of measurement target fluid, a ratio L/H of a width H of the channel portion in which the detecting element is disposed, and a distance L from the bending portion at the upstream side of the detecting element to the upstream end portion of the detecting portion is set in range from 0 to 0.7, and a ratio D/H of a distance D from the wall surface of the base side of the detecting element to the center of the detecting portion of the surface of the detecting element and the width H of the channel portion is set in the range from 0.22 to 0.33.
摘要翻译:在包括具有至少一个弯曲部分和至少一个通道部分的旁通通道的流量测量装置中,检测元件设置在旁路通道中以检测测量对象流体的流量,宽度的比率L / H 设置有检测元件的通道部分的距离L和从检测部件的上游侧的弯曲部到检测部的上游端部的距离L设定在0〜0.7的范围内, 从检测元件的底侧的壁面到检测元件的表面的检测部分的中心的距离D和通道部分的宽度H的距离D的D / H设定在0.22至0.33的范围内 。
摘要:
Although flow detection accuracy deterioration due to a subject fluid inflow into a gap between a sensor device and an engaging portion is prevented by an underflow inhibitor, the underflow inhibitor overflow to a sensor device surface results in the subject fluid turbulence, causing a flow element output fluctuation risk. One solution is a configuration comprising a sensor device made of a planar semiconductor material with a heating element and an intake air temperature detection element formed thereon, a support member containing an engaging portion the sensor device is engaged to, which is placed at a passage the subject fluid circulates and underflow inhibitor being filled into a void between the sensor device and the support member to prevent the subject fluid from flowing into the void, and a pooling portion being placed to prevent the under flow inhibitor from overflowing out of the void.
摘要:
Although flow detection accuracy deterioration due to a subject fluid inflow into a gap between a sensor device and an engaging portion is prevented by an underflow inhibitor, the underflow inhibitor overflow to a sensor device surface results in the subject fluid turbulence, causing a flow element output fluctuation risk. One solution is a configuration comprising a sensor device made of a planar semiconductor material with a heating element and an intake air temperature detection element formed thereon, a support member containing an engaging portion the sensor device is engaged to, which is placed at a passage the subject fluid circulates and underflow inhibitor being filled into a void between the sensor device and the support member to prevent the subject fluid from flowing into the void, and a pooling portion being placed to prevent the under flow inhibitor from overflowing out of the void.