摘要:
A motor is driven by the γ-axis current of a γδ coordinate system that is an imaginary rotating coordinate system. A command current value preparation unit sets the γ-axis command current value based on the command steering torque and the detected steering torque. The command current value preparation unit includes a command current increase/decrease amount calculation unit and an addition unit. The command current increase/decrease amount calculation unit calculates the current increase/decrease amount for the command current value based on the sign of the command steering torque and the deviation of the detected steering torque from the command steering torque. The current increase/decrease amount calculated by the command current increase/decrease amount calculation unit is added to the immediately preceding value of the command current value by the addition unit. Thus, the command current value in the present calculation cycle is calculated.
摘要:
In an electric power steering apparatus which comprises a motor for generating steering assist force, it is judged whether or not the vehicle is in a state of straight forward motion. A mean reference steering angle is determined by dividing total of relative steering angles which are determined when the vehicle is judged to be in a state of straight forward motion by the number of judgments that the vehicle is in a state of straight forward motion. A steering angle is determined by subtracting a steering angle midpoint from a relative steering angle with taking the mean reference steering angle as the steering angle midpoint. The output of the motor for generating steering assist force is corrected in accordance with an output correction value determined on the basis of the determined steering angle. This output correction value is altered so as to have a positive correlation with the number of judgments that the vehicle is in a state of straight forward motion.
摘要:
A F/B gain control unit computes a first change component by executing torque feedback control based on a torque deviation using a feedback gain that is computed by a F/B gain variable control unit. The F/B gain variable control unit computes one of two different feedback gains that correspond to a “first computation mode” in which the first change component is used as an addition angle and a “second computation mode” in which a value obtained by correcting the first change component by an estimated motor rotation angular velocity is used as the addition angle, respectively. A feedback gain used in the first computation mode is set such that a response at the feedback gain is higher than that at a feedback gain used in the second computation mode.
摘要翻译:F / B增益控制单元通过使用由F / B增益变量控制单元计算的反馈增益,基于转矩偏差执行转矩反馈控制来计算第一变化分量。 F / B增益可变控制单元计算与将第一变化分量用作相加角的“第一计算模式”对应的两个不同的反馈增益中的一个,以及“第二计算模式”,其中通过校正获得的值 将第一变化分量乘以估计的电机旋转角速度作为相加角。 设置在第一计算模式中使用的反馈增益,使得反馈增益的响应高于在第二计算模式中使用的反馈增益时的响应。
摘要:
In an electric power steering apparatus which comprises a motor (10) for generating steering assist force, it is judged whether or not the vehicle is in a state of straight forward motion. A mean reference steering angle is determined by dividing total of relative steering angles which are determined when the vehicle is judged to be in a state of straight forward motion by the frequency of judgments that the vehicle is in a state of straight forward motion. A steering angle is determined by subtracting a steering angle midpoint from a relative steering angle with taking the mean reference steering angle as the steering angle midpoint. The output of the motor (10) for generating steering assist force is corrected in accordance with an output correction value determined on the basis of the determined steering angle. This output correction value is altered so as to have a positive correlation with the frequency of judgments that the vehicle is in a state of straight forward motion.
摘要:
A current increase-decrease amount (ΔIγ*) computed by a command current increase-decrease amount computing unit is added to an immediately preceding value (Iγ*(n−1)) of a command current value (Iγ*) in an adder. The command current value (Iγ*) obtained by the adder is given to a high/low limit limiter. The high/low limit limiter limits the command current value (Iγ*), obtained by the adder, to a value between a low limit value (ξmin (ξmin≧0)) and a high limit value (ξmax (ξmax>ξmin)). A high limit value setting unit obtains the high limit value (ξmax) corresponding to the vehicle speed detected by the vehicle speed sensor, from a vehicle speed-vs.-high limit value map set by a map creating/updating unit, and sets the obtained high limit value (ξmax) in the high/low limit limiter.
摘要:
A motor control unit includes a detected steering torque correction unit that corrects the detected steering torque that is detected by a torque sensor and then subjected to a limitation process by a steering torque limiter. When the absolute value of the detected steering torque is equal to or smaller than a predetermined value, the detected steering torque correction unit corrects the detected steering torque to 0. When the absolute value of the detected steering torque is larger than the predetermined value, the detected steering torque correction unit outputs the detected steering torque without correction. A PI control unit calculates the addition angle based on the deviation of the control torque obtained through correction by the detected steering torque correction unit from the command steering torque.
摘要:
When the estimated motor temperature becomes equal to or higher than the first predetermined temperature, an addition angle correction unit temporarily decreases the absolute value of the addition angle output from an addition angle limiter at time intervals. The addition angle correction unit makes the time interval shorter as the estimated motor temperature increases. When the time interval becomes equal to or shorter than the predetermined threshold, that is, when the estimated motor temperature becomes equal to or higher than the second predetermined temperature that is higher than the first predetermined temperature, the addition angle correction unit notifies a command current value changing unit of a current stop command. Thus, the γ-axis command current value is changed to 0, and therefore the steering mode is shifted to the manual steer mode.
摘要:
An electric power steering system includes a motor that applies assist force to a steering system, and updates a motor resistance (Rm) that is a value indicating a resistance of the motor. Specifically, the motor resistance (Rm) is updated on the basis of the fact that an induced voltage (EX) of the motor is smaller than a first determination value (GA). In addition, when the induced voltage (EX) is smaller than or equal to a second determination value (GB), a divided value that is obtained by dividing a motor voltage (Vm) by a motor current (Im) is set as a new motor resistance (Rm).
摘要:
A motor control unit controls a motor including a rotor and a stator facing the rotor. A current drive unit drives the motor at an axis current value of a rotating coordinate system that rotates in accordance with a control angle that is a rotational angle used in a control. A control angle calculation unit obtains, at every predetermined calculation cycle, a present value of the control angle by adding an addition angle to an immediately preceding value of the control angle. A torque detection unit detects a torque other than a motor torque and applied to a drive target driven by the motor. A command torque setting unit sets a command torque to be applied to the drive target. An addition angle calculation unit calculates the addition angle to be added to the control angle through a proportional-integral control based on a torque deviation of the torque detected by the torque detection unit from the command torque set by the command torque setting unit.
摘要:
Angular widths of respective magnetic poles of a detection rotor are stored and divisions are set for respective magnetic pole pairs. Based on output signals from first and second magnetic sensors, a rotation angle computation unit computes first and second rotation angles that are rotation angles within the corresponding division. Based on the angular widths, the rotation angle computation unit identifies the magnetic pole sensed by the first magnetic sensor and computes a first absolute rotation angle using the first rotation angle. Based on the identified magnetic pole and the second rotation angle, the rotation angle computation unit computes a second absolute rotation angle. The rotation angle of the detection rotor is computed based on the first and second absolute angles.