摘要:
Systems and methods are disclosed to manage resources in a cloud-based computing system by generating a model of a relationship between cloud database resources and an expected profit based on cloud-server system parameters and service level agreements (SLAs) that indicates profits for different system performances, wherein the model comprises a two level optimization/control problem, wherein model receives system metrics, number of replicas, and arrival rate as the multiple input; and dynamically adjusting resource allocation among different customers based on current customer workload and the expected profit to maximize the expected profit for a cloud computing service provider.
摘要:
An admission control system for a cloud database includes a machine learning prediction module to estimate a predicted probability for a newly arrived query with a deadline, if admitted into the cloud database, to finish its execution before said deadline, wherein the prediction considers query characteristics and current system conditions. The system also includes a decision module applying the predicted probability to admit a query into the cloud database with a target of profit maximization with an expected profit determined using one or more service level agreements (SLAs).
摘要:
Systems and methods are disclosed to manage resources in a cloud-based computing system by generating a model of a relationship between cloud database resources and an expected profit based on cloud-server system parameters and service level agreements (SLAs) that indicates profits for different system performances, wherein the model comprises a two level optimization/control problem, wherein model receives system metrics, number of replicas, and arrival rate as the multiple input; and dynamically adjusting resource allocation among different customers based on current customer workload and the expected profit to maximize the expected profit for a cloud computing service provider.
摘要:
An admission control system for a cloud database includes a machine learning prediction module to estimate a predicted probability for a newly arrived query with a deadline, if admitted into the cloud database, to finish its execution before said deadline, wherein the prediction considers query characteristics and current system conditions. The system also includes a decision module applying the predicted probability to admit a query into the cloud database with a target of profit maximization with an expected profit determined using one or more service level agreements (SLAs).