摘要:
There are provided an automatic vision sensor placement apparatus and method which analyze static spatial information in various aspects, calculate priorities of spaces using an agent that models the movement pattern of a user, suggest a method of effectively covering a given space, provide a camera placement method to appropriately install cameras with various levels of performance in a specified space, and calculate the optimal number of cameras to be installed based on installation cost.
摘要:
There are provided an automatic vision sensor placement apparatus and method which analyze static spatial information in various aspects, calculate priorities of spaces using an agent that models the movement pattern of a user, suggest a method of effectively covering a given space, provide a camera placement method to appropriately install cameras with various levels of performance in a specified space, and calculate the optimal number of cameras to be installed based on installation cost.
摘要:
There is provided a method for real-time target detection comprising detecting a preprocessed pixel as a target and/or a background, based on a library, and refining the library by extracting a sample from the target or the background.
摘要:
Provided are vision watching system and method for a safety hat. The vision watching system includes: a receiver which receives an image signal of a watching zone of a camera; a processor which determines whether an object of the image signal is a person, based on a size and an outline of the object and determines whether the person wears a safety hat, based on at least one or more of red (R), green (G), and blue (B) values of a head part of the person and a Hue value of Hue, Saturation, Value (HSV) of the head part; and a transmitter which outputs a Pan-Tilt-Zoom (PTZ) control signal of the camera to obtain a thumbnail image of the person when determining the person who does not wear the safety hat.
摘要:
There is provided a method of localizing an object comprising projecting an object located on an object plane and a reference point corresponding thereto on a virtual viewable plane and an actual camera plane; estimating coordinates of the reference point; and prescribing a relationship between a location of the object and the coordinates of the reference point.
摘要:
A method of recognizing a self location of an image acquisition device by acquiring an image of two or more reference objects is provided. The method of the present invention comprises setting an actual camera plane, two or more reference object planes, and two or more virtual viewable planes located between the actual camera plane and the reference object planes; projecting the reference objects to a corresponding one of the virtual viewable planes; calculating a distance between a viewing axis and the reference objects and a distance between the viewing axis and images on the actual camera plane, the images corresponding to the reference objects; and sensing the self location of the image acquisition device by using an orientation and a zoom factor of the image acquisition device and coordinates of the reference objects, wherein the zoom factor is a ratio of a length of the reference object plane and a distance between the reference object plane and the virtual viewable plane, and the actual camera plane, the virtual viewable plane, and the reference object plane are perpendicular to the viewing axis.
摘要:
Provided are an apparatus and a method for tracking movements of objects to infer a topology of a network of multiple cameras. The apparatus infers the topology of the network formed of the multiple cameras that sequentially obtain images and includes an object extractor, a haunting data generator, and a haunting database (DB), and a topology inferrer. The object extractor extracts at least one from each of the obtained images, for the multiple cameras. The haunting data generator generates appearing cameras and appearing times at which the moving objects appear, and disappearing cameras and disappearing times at which the moving objects disappear, for the multiple cameras. The haunting DB stores the appearing cameras and appearing times and the disappearing cameras and disappearing times of the moving object, for the multiple cameras. The topology inferrer infers the topology of the network using the appearing cameras and appearing times and the disappearing cameras and disappearing times of moving objects. Therefore, the apparatus accurately infers topologies and distances among the multiple cameras in the network of the multiple cameras using the cameras and appearing and disappearing times at which the moving objects appear and disappear. As a result, the apparatus accurately track the moving objects in the network.
摘要:
There is provided a method of localizing an object comprising projecting an object located on an object plane and a reference point corresponding thereto on a virtual viewable plane and an actual camera plane; estimating coordinates of the reference point; and prescribing a relationship between a location of the object and the coordinates of the reference point.
摘要:
There is provided a method of tracking an object in a three-dimensional (3-D) space by using particle filter-based acoustic sensors, the method comprising selecting two planes in the 3-D space; executing two-dimensional (2-D) particle filtering on the two selected planes, respectively; and associating results of the 2-D particle filtering on the respective planes.
摘要:
A method of recognizing a self location of an image acquisition device by acquiring an image of two or more reference objects is provided. The method of the present invention comprises setting an actual camera plane, two or more reference object planes, and two or more virtual viewable planes located between the actual camera plane and the reference object planes; projecting the reference objects to a corresponding one of the virtual viewable planes; calculating a distance between a viewing axis and the reference objects and a distance between the viewing axis and images on the actual camera plane, the images corresponding to the reference objects; and sensing the self location of the image acquisition device by using an orientation and a zoom factor of the image acquisition device and coordinates of the reference objects, wherein the zoom factor is a ratio of a length of the reference object plane and a distance between the reference object plane and the virtual viewable plane, and the actual camera plane, the virtual viewable plane, and the reference object plane are perpendicular to the viewing axis.