Abstract:
A controller for controlling dimming of a light-emitting diode (LED) light source includes a switch monitoring pin, a current monitoring pin, and a control pin. The switch monitoring pin monitors an operation of a power switch which transfers an AC voltage to a rectifier when the power switch is on. The current monitoring pin receives a current monitoring signal indicating a current flowing through the LED light source. The control pin generates a control signal to control a second switch coupled in series with the LED light source to adjust the brightness of the LED light source according to the operation of the power switch.
Abstract:
A controller that monitors a rectified voltage and detects whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer is disclosed. The controller controls dimming of a light source according to the rectified voltage if the rectified voltage comes from the TRIAC dimmer. The controller controls dimming of the light source according to an operation of the on/off switch dimmer if the rectified voltage comes from the on/off switch dimmer.
Abstract:
A dimming controller for controlling power of a light source has a monitoring terminal, a dimming terminal, and a control terminal. The monitoring terminal is operable for receiving a current monitoring signal indicating a current flowing through the light source. The dimming terminal is operable for receiving a ramp signal. The voltage of the ramp signal increases if a power switch coupled between a power source and the light source is turned on. The control terminal is operable for providing a control signal to control a control switch coupled in series with the light source based on the current monitoring signal and the ramp signal. An average current of the light source increases as the ramp signal increases until the average current reaches a predetermined level.
Abstract:
A differential driving circuit for powering a light source is disclosed. The differential driving circuit includes a first set of switches and a second set of switches. A first current from a power source flows through the first set of switches to charge a first energy storage element when the first set of switches are turned on. A second current from the first energy storage element flows through the second set of switches to power the light source when the second set of switches are turned on. The differential driving circuit further includes a second energy storage element coupled to the light source in parallel and for providing a differential voltage to the light source.
Abstract:
A differential driving circuit for powering a light source is disclosed. The differential driving circuit includes a first set of switches and a second set of switches. A first current from a power source flows through the first set of switches to charge a first energy storage element when the first set of switches are turned on. A second current from the first energy storage element flows through the second set of switches to power the light source when the second set of switches are turned on. The differential driving circuit further includes a second energy storage element coupled to the light source in parallel and for providing a differential voltage to the light source.
Abstract:
A circuit for driving a light source includes a voltage converter, a switch and a controller. The voltage converter converts an AC input voltage signal to a first rectified AC voltage signal. The voltage converter further generates an average signal proportional to an average voltage level of the first rectified AC voltage signal. The switch is coupled to the light source in series. The controller coupled to the voltage converter and the switch compares the first rectified AC voltage signal with the average signal to generate a pulse signal. The controller further generates a dimming control signal based on the pulse signal to control the switch thereby controlling dimming of the light source.
Abstract:
A controller for controlling dimming of a light source includes a detection pin, an input signal pin, and a monitoring pin. The detection pin is operable for monitoring a rectified voltage and for detecting whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer. The input signal pin is operable for receiving an input signal indicative of the rectified voltage and the controller controls dimming of the light source according to the input signal if the rectified voltage comes from a TRIAC dimmer. The monitoring pin is operable for receiving a monitoring signal indicating an operation of the on/off switch dimmer and the controller controls dimming of the light source according to the monitoring signal if the rectified voltage comes from an on/off switch dimmer.
Abstract:
There is provided a driving circuit for controlling power of a light source. The driving circuit includes a power converter and a dimming controller. The power converter is coupled between a power source and the light source, and can receive power from the power source and provide a regulated power to the light source. The dimming controller is coupled to the power converter, and can receive a switch monitoring signal. The switch monitoring signal can indicate an operation of a power switch coupled between the power source and the driving circuit. The dimming controller is further operable for adjusting the regulated power from the power converter by controlling a switch coupled in series with the light source according to the switch monitoring signal.
Abstract:
A controller for controlling dimming of an LED light source includes a control terminal and dimming control circuitry coupled to the control terminal. The control terminal provides a driving signal to control a control switch coupled to the LED light source, thereby controlling the dimming of the LED light source. The dimming control circuitry generates the driving signal according to a set of operations of a power switch that transfers an AC signal. The dimming control circuitry further adjusts the driving signal by counting multiple waves of the AC signal to control the dimming of the LED light source.
Abstract:
A dimming controller for controlling dimming of a light-emitting diode (LED) light source includes a monitoring terminal and a control terminal. The monitoring terminal receives a switch monitoring signal indicative of an operation of a power switch which transfers power from an AC power source to a bridge rectifier when the power switch is on. A power converter receives input power from the bridge rectifier and provides output power to the LED light source. The control terminal generates a control signal to adjust the output power according to the switch monitoring signal so as to control dimming of the LED light source.