Abstract:
A controller for controlling dimming of a light-emitting diode (LED) light source includes a switch monitoring pin, a current monitoring pin, and a control pin. The switch monitoring pin monitors an operation of a power switch which transfers an AC voltage to a rectifier when the power switch is on. The current monitoring pin receives a current monitoring signal indicating a current flowing through the LED light source. The control pin generates a control signal to control a second switch coupled in series with the LED light source to adjust the brightness of the LED light source according to the operation of the power switch.
Abstract:
A driving circuit for driving a light source includes a converter and a dimming controller. The converter coupled to a power source is operable for receiving power from the power source and for providing regulated power to the light source according to control signals. The dimming controller coupled to the converter is operable for monitoring a power switch coupled between the power source and the converter, for receiving a color change signal indicating a first set of operations of the power switch and a dimming request signal indicating a second set of operations of the power switch, for controlling the control signals to change the color of the light source in response to the color change signal, and for controlling the control signals to adjust the brightness of the light source in response to the dimming request signal.
Abstract:
A controller that monitors a rectified voltage and detects whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer is disclosed. The controller controls dimming of a light source according to the rectified voltage if the rectified voltage comes from the TRIAC dimmer. The controller controls dimming of the light source according to an operation of the on/off switch dimmer if the rectified voltage comes from the on/off switch dimmer.
Abstract:
A dimming controller can operate in a first mode or a second mode to control dimming of a light-emitting diode (LED) light source. The dimming controller can include a voltage control terminal and a current control terminal. The voltage control terminal provides a pulse signal when the dimming controller operates in the first mode to operate a control switch in either a first state or a second state. A first current flowing through the LED light source increases when the control switch is in the first state and decreases when the control switch is in the second state. The voltage control terminal provides a control signal to the control switch to cut off the first current when the dimming controller operates in the second mode. The current control terminal conducts a second current through the LED light source when the dimming controller operates in the second mode.
Abstract:
A circuit for driving a light source includes a voltage converter, a switch and a controller. The voltage converter converts an AC input voltage signal to a first rectified AC voltage signal. The voltage converter further generates an average signal proportional to an average voltage level of the first rectified AC voltage signal. The switch is coupled to the light source in series. The controller coupled to the voltage converter and the switch compares the first rectified AC voltage signal with the average signal to generate a pulse signal. The controller further generates a dimming control signal based on the pulse signal to control the switch thereby controlling dimming of the light source.
Abstract:
There is provided a driving circuit for controlling power of a light source. The driving circuit includes a power converter and a dimming controller. The power converter is coupled between a power source and the light source, and can receive power from the power source and provide a regulated power to the light source. The dimming controller is coupled to the power converter, and can receive a switch monitoring signal. The switch monitoring signal can indicate an operation of a power switch coupled between the power source and the driving circuit. The dimming controller is further operable for adjusting the regulated power from the power converter by controlling a switch coupled in series with the light source according to the switch monitoring signal.
Abstract:
A controller for controlling dimming of a light-emitting diode (LED) light source provides a pulse signal by comparing a sensing signal indicative of a current flowing through the LED light source to a reference signal. The controller controls the current through the LED light source according to the pulse signal during a first state of a pulse-width modulation signal and cutting off the current through the LED light source during a second state of the pulse-width modulation signal. The controller receives a dimming request signal indicative of an operation of a power switch coupled between an AC power source and a bridge rectifier and adjusts both a level of the reference signal and a duty cycle of the pulse-width modulation signal based on the dimming request signal.
Abstract:
A dimming controller for controlling power of a light source has a monitoring terminal, a dimming terminal, and a control terminal. The monitoring terminal is operable for receiving a current monitoring signal indicating a current flowing through the light source. The dimming terminal is operable for receiving a ramp signal. The voltage of the ramp signal increases if a power switch coupled between a power source and the light source is turned on. The control terminal is operable for providing a control signal to control a control switch coupled in series with the light source based on the current monitoring signal and the ramp signal. An average current of the light source increases as the ramp signal increases until the average current reaches a predetermined level.
Abstract:
A differential driving circuit for powering a light source is disclosed. The differential driving circuit includes a first set of switches and a second set of switches. A first current from a power source flows through the first set of switches to charge a first energy storage element when the first set of switches are turned on. A second current from the first energy storage element flows through the second set of switches to power the light source when the second set of switches are turned on. The differential driving circuit further includes a second energy storage element coupled to the light source in parallel and for providing a differential voltage to the light source.
Abstract:
A differential driving circuit for powering a light source is disclosed. The differential driving circuit includes a first set of switches and a second set of switches. A first current from a power source flows through the first set of switches to charge a first energy storage element when the first set of switches are turned on. A second current from the first energy storage element flows through the second set of switches to power the light source when the second set of switches are turned on. The differential driving circuit further includes a second energy storage element coupled to the light source in parallel and for providing a differential voltage to the light source.