Abstract:
A driving circuit for driving a light-emitting diode (LED) light source includes a buck-boost converter and a controller. The buck-boost converter receives an input voltage and an input current and powers the LED light source, and comprises a switch controlled by a driving signal. The controller receives a first signal indicating a current through the LED light source, and generates the driving signal based on the first signal to control the switch and to adjust the current through the LED light source. The buck-boost converter further comprises a current sensor which provides a second signal indicating an instant current flowing through the buck-boost converter, wherein the first signal is derived from the second signal, and wherein a reference ground of the controller is different from a ground of the driving circuit.
Abstract:
A dimming controller for controlling dimming of a light-emitting diode (LED) light source includes a monitoring terminal and a control terminal. The monitoring terminal receives a switch monitoring signal indicative of an operation of a power switch which transfers power from an AC power source to a bridge rectifier when the power switch is on. A power converter receives input power from the bridge rectifier and provides output power to the LED light source. The control terminal generates a control signal to adjust the output power according to the switch monitoring signal so as to control dimming of the LED light source.
Abstract:
A dimming controller for controlling power of a light source has a monitoring terminal, a dimming terminal, and a control terminal. The monitoring terminal is operable for receiving a current monitoring signal indicating a current flowing through the light source. The dimming terminal is operable for receiving a ramp signal. The voltage of the ramp signal increases if a power switch coupled between a power source and the light source is turned on. The control terminal is operable for providing a control signal to control a control switch coupled in series with the light source based on the current monitoring signal and the ramp signal. An average current of the light source increases as the ramp signal increases until the average current reaches a predetermined level.
Abstract:
A controller that monitors a rectified voltage and detects whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer is disclosed. The controller controls dimming of a light source according to the rectified voltage if the rectified voltage comes from the TRIAC dimmer. The controller controls dimming of the light source according to an operation of the on/off switch dimmer if the rectified voltage comes from the on/off switch dimmer.
Abstract:
A differential driving circuit for powering a light source is disclosed. The differential driving circuit includes a first set of switches and a second set of switches. A first current from a power source flows through the first set of switches to charge a first energy storage element when the first set of switches are turned on. A second current from the first energy storage element flows through the second set of switches to power the light source when the second set of switches are turned on. The differential driving circuit further includes a second energy storage element coupled to the light source in parallel and for providing a differential voltage to the light source.
Abstract:
A dimming controller can operate in a first mode or a second mode to control dimming of a light-emitting diode (LED) light source. The dimming controller can include a voltage control terminal and a current control terminal. The voltage control terminal provides a pulse signal when the dimming controller operates in the first mode to operate a control switch in either a first state or a second state. A first current flowing through the LED light source increases when the control switch is in the first state and decreases when the control switch is in the second state. The voltage control terminal provides a control signal to the control switch to cut off the first current when the dimming controller operates in the second mode. The current control terminal conducts a second current through the LED light source when the dimming controller operates in the second mode.
Abstract:
A controller controls power to a light source. The light source receives a rectified AC voltage and includes a first plurality of LEDs and a second plurality of LEDs. The controller regulates a current flowing through the first plurality of LEDs to a first predetermined level when the rectified AC voltage is within a first predetermined range. The second plurality of LEDs remain off when the rectified AC voltage is within the first predetermined range.
Abstract:
A circuit for powering a light source includes a filter, a transformer, and a controller. The filter receives an input voltage and filters the input voltage to provide a regulated voltage. The transformer converts the regulated voltage to an output voltage to power the light source. The controller generates a driving signal to alternately operate the switch between a first state and a second state. The controller corrects a power factor of the circuit by controlling time durations of the first state and the second state, such that an input current decreases to a predetermined level during the second state and increases from the predetermined level to a peak level proportional to the input voltage during the first state. The controller controls the ratio of time in the first state to time in the second state to adjust an output current flowing through the light source to a target level.
Abstract:
A driving circuit for driving a light source includes a converter and a dimming controller. The converter coupled to a power source is operable for receiving power from the power source and for providing regulated power to the light source according to control signals. The dimming controller coupled to the converter is operable for monitoring a power switch coupled between the power source and the converter, for receiving a color change signal indicating a first set of operations of the power switch and a dimming request signal indicating a second set of operations of the power switch, for controlling the control signals to change the color of the light source in response to the color change signal, and for controlling the control signals to adjust the brightness of the light source in response to the dimming request signal.
Abstract:
A controller for controlling dimming of a light source includes a detection pin, an input signal pin, and a monitoring pin. The detection pin is operable for monitoring a rectified voltage and for detecting whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer. The input signal pin is operable for receiving an input signal indicative of the rectified voltage and the controller controls dimming of the light source according to the input signal if the rectified voltage comes from a TRIAC dimmer. The monitoring pin is operable for receiving a monitoring signal indicating an operation of the on/off switch dimmer and the controller controls dimming of the light source according to the monitoring signal if the rectified voltage comes from an on/off switch dimmer.