Abstract:
Provided are a method and device for processing a service crossing the master node, which relate to the communications field, and solve a problem of a resource conflict caused by the service crossing the master node in the OBTN. The method comprises: when assigning a bandwidth for a service requested by each node within the present DBA period, a master node selects a processing strategy; the master node eliminates, according to the selected processing strategy, a resource conflict caused by the service crossing the master node, and assigns a bandwidth to the service requested by each node. The technical solution provided by the present disclosure is applicable to the OBTN, thereby implementing highly reliable OBTN resource scheduling.
Abstract:
Provided are service sending, receiving methods and devices. The service sending method includes that: one or more services are sequentially mapped into a target transmission frame; the target transmission frame is encapsulated into Optical Burst Units (OBUs), which carry one or more Transmission Adapter Units (TAUs), according to a sequence of mapping, wherein the one or more TAUs carried in the N OBUs are able to be formed into the target transmission frame, and each TAU carries a data fragment of the one or more services; N is a positive integer; an Identifier (ID) for indicating an identity of the target transmission frame is added into an overhead of each TAU; a length indicator for indicating the length of payload, occupied by the TAU, in an OBU is added into the overhead of each TAU; a position identifier for indicating a position of the TAU in the target transmission frame is added into the overhead of each TAU; and the N OBUs are sent to a destination node one by one according to a sequence of encapsulating. According to the solution, service transmission can be performed in an Optical Burst Transport Network (OBTN).
Abstract:
A method for bandwidth map update includes: after receiving a bandwidth report carried by a control frame, a master node newly establishing a bandwidth map, newly establishing a resource state table, and setting all resource states in the newly established resource state table to be available; adding a cross-master node transport channel drop allocation structure of the newly established bandwidth map in accordance with a cross-master node transport channel add allocation structure of a bandwidth map to be updated, and updating the resource state table; according to the bandwidth report carried by the control frame, allocating a wavelength and an optical burst timeslot one by one to a current bandwidth request, adding wavelengths and optical burst timeslots to the newly established bandwidth map, generating a new bandwidth map, and updating the resource state table; and distributing the control frame carrying the new bandwidth map to slave nodes hop by hop.