摘要:
Displays such as liquid crystal displays may be provided with structures that minimize curtain mura. A display may have upper and lower polarizers. A color filter layer and a thin film transistor layer may be located between the upper and lower polarizers. A liquid crystal layer may be interposed between the color filter layer and the thin film transistor layer. A first optical film layer that includes a birefringent compensating layer may be located between the upper polarizer and the color filter layer. A second optical film layer that is devoid of birefringent compensating layers may be located between the thin film transistor layer and the lower polarizer. A grid of metal signal lines may be used to distribute signals to thin film transistors on the thin film transistor layer. A black mask may be interposed between the grid of signal lines and the thin film transistor layer.
摘要:
Displays such as liquid crystal displays may be provided with structures that minimize curtain mura. A display may have upper and lower polarizers. A color filter layer and a thin film transistor layer may be located between the upper and lower polarizers. A liquid crystal layer may be interposed between the color filter layer and the thin film transistor layer. A first optical film layer that includes a birefringent compensating layer may be located between the upper polarizer and the color filter layer. A second optical film layer that is devoid of birefringent compensating layers may be located between the thin film transistor layer and the lower polarizer. A grid of metal signal lines may be used to distribute signals to thin film transistors on the thin film transistor layer. A black mask may be interposed between the grid of signal lines and the thin film transistor layer.
摘要:
Display ground plane structures may contain slits. Image pixel electrodes in the display may be arranged in rows and columns. Image pixels in the display may be controlled using gate lines that are associated with the rows and data lines that are associated with the columns. An electric field may be produced by each image pixel electrode that extends through a liquid crystal layer to an associated portion of the ground plane. The slits in the ground plane may have a slit width. Data lines may be located sufficiently below the ground plane and sufficiently out of alignment with the slits to minimize crosstalk from parasitic electric fields. A three-column inversion scheme may be used when driving data line signals into the display, so that pairs of pixels that straddle the slits are each driven with a common polarity. Gate line scanning patterns may be used that enhance display uniformity.
摘要:
Displays such as liquid crystal displays may be used in electronic devices. During operation of a display, electrostatic charges on the surface of the display may give rise to electric fields. One or more electric field shielding layers may be provided in the display to prevent the electric fields from disrupting operation of the liquid crystals material in the display. The shielding layers may be formed at a location in the stack of layers that make up the display that is above the liquid crystal material of the display. Touch sensors and thin film transistors may be located below the shielding layer.
摘要:
Displays such as liquid crystal displays may be used in electronic devices. During operation of a display, electrostatic charges on the surface of the display may give rise to electric fields. One or more electric field shielding layers may be provided in the display to prevent the electric fields from disrupting operation of the liquid crystals material in the display. The shielding layers may be formed at a location in the stack of layers that make up the display that is above the liquid crystal material of the display. Touch sensors and thin film transistors may be located below the shielding layer.
摘要:
An electronic device may have a liquid crystal display having a backlight and color mixing prevention structures. The color mixing prevention structures may, in part, be formed from one or more arrays of color filter elements. The liquid crystal display may include first and second transparent substrate layers on opposing sides of a liquid crystal layer. The display may include a first array of color filter elements on the first transparent substrate layer and a second array of color filter elements on the second transparent substrate layer. One or more of the arrays of color filter elements may include a black matrix formed over portions of the color filter elements. The color filter elements may fill or partially fill openings in the black matrix. The display may include a collimating layer on the second transparent substrate layer. The color filter elements may include cholesteric color filter elements.
摘要:
An electronic device may have a liquid crystal display having a backlight and color mixing prevention structures. The color mixing prevention structures may, in part, be formed from one or more arrays of color filter elements. The liquid crystal display may include first and second transparent substrate layers on opposing sides of a liquid crystal layer. The display may include a first array of color filter elements on the first transparent substrate layer and a second array of color filter elements on the second transparent substrate layer. One or more of the arrays of color filter elements may include a black matrix formed over portions of the color filter elements. The color filter elements may fill or partially fill openings in the black matrix. The display may include a collimating layer on the second transparent substrate layer. The color filter elements may include cholesteric color filter elements.
摘要:
Display ground plane structures may contain slits. Image pixel electrodes in the display may be arranged in rows and columns. Image pixels in the display may be controlled using gate lines that are associated with the rows and data lines that are associated with the columns. An electric field may be produced by each image pixel electrode that extends through a liquid crystal layer to an associated portion of the ground plane. The slits in the ground plane may have a slit width. Data lines may be located sufficiently below the ground plane and sufficiently out of alignment with the slits to minimize crosstalk from parasitic electric fields. A three-column inversion scheme may be used when driving data line signals into the display, so that pairs of pixels that straddle the slits are each driven with a common polarity. Gate line scanning patterns may be used that enhance display uniformity.
摘要:
An electronic device may be provided with a display having backlight structures that include a light guide plate formed from a clear polymer film. The polymer film may have an edge into which light is emitted from an adjacent array of light-emitting diodes. The light emitting diodes may each include a semiconductor device that emits light. The semiconductor device in each diode may be mounted on lead frame structures and wirebonded to the lead frame structures with first and second wire bonds. To improve backlight homogeneity and thereby reduce the mixing distance for light in the light guide plate, the diodes may be spaced closely together using diode packages having end faces that are free of lead frame structures. Exposed lead frame structures for soldering the light-emitting diodes to a substrate may be formed under the light-emitting diodes and on rear surfaces of the light-emitting diodes.
摘要:
An electronic device may be provided with a display having backlight structures that include a light guide plate formed from a clear polymer film. The polymer film may have an edge into which light is emitted from an adjacent array of light-emitting diodes. The light emitting diodes may each include a semiconductor device that emits light. The semiconductor device in each diode may be mounted on lead frame structures and wirebonded to the lead frame structures with first and second wire bonds. To improve backlight homogeneity and thereby reduce the mixing distance for light in the light guide plate, the diodes may be spaced closely together using diode packages having end faces that are free of lead frame structures. Exposed lead frame structures for soldering the light-emitting diodes to a substrate may be formed under the light-emitting diodes and on rear surfaces of the light-emitting diodes.