Using anchor text with hyperlink structures for web searches
    1.
    发明授权
    Using anchor text with hyperlink structures for web searches 有权
    使用锚文本与超链接结构进行网页搜索

    公开(公告)号:US08380722B2

    公开(公告)日:2013-02-19

    申请号:US12748903

    申请日:2010-03-29

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30887

    摘要: This document describes tools for adjusting anchor text weight to provide more relevant search engine results. Specifically, these tools take advantage of a site-relationship model to consider relationships not only between an anchor text source site and a destination page but also relationships between multiple anchor text source sites to improve web searches. Consideration of these relationships aids in determining a new an anchor text weight, which in turn results in more relevant search results.

    摘要翻译: 本文档描述了调整锚文本权重以提供更相关的搜索引擎结果的工具。 具体来说,这些工具利用站点关系模型来考虑不仅锚文本源站点和目标页面之间的关系,还考虑多个锚文本源站点之间的关系,以改进Web搜索。 考虑这些关系有助于确定新的锚文本权重,这又导致更相关的搜索结果。

    Using Anchor Text With Hyperlink Structures for Web Searches
    2.
    发明申请
    Using Anchor Text With Hyperlink Structures for Web Searches 有权
    使用超链接结构使用锚文本进行网页搜索

    公开(公告)号:US20110238644A1

    公开(公告)日:2011-09-29

    申请号:US12748903

    申请日:2010-03-29

    IPC分类号: G06F3/14 G06F17/30

    CPC分类号: G06F17/30887

    摘要: This document describes tools for adjusting anchor text weight to provide more relevant search engine results. Specifically, these tools take advantage of a site-relationship model to consider relationships not only between an anchor text source site and a destination page but also relationships between multiple anchor text source sites to improve web searches. Consideration of these relationships aids in determining a new an anchor text weight, which in turn results in more relevant search results.

    摘要翻译: 本文档描述了调整锚文本权重以提供更相关的搜索引擎结果的工具。 具体来说,这些工具利用站点关系模型来考虑不仅锚文本源站点和目标页面之间的关系,还考虑多个锚文本源站点之间的关系,以改进Web搜索。 考虑这些关系有助于确定新的锚文本权重,这又导致更相关的搜索结果。

    Enhancing search-result relevance ranking using uniform resource locators for queries containing non-encoding characters
    3.
    发明授权
    Enhancing search-result relevance ranking using uniform resource locators for queries containing non-encoding characters 有权
    使用统一的资源定位器来增强包含非编码字符的查询的搜索结果相关性排序

    公开(公告)号:US08977624B2

    公开(公告)日:2015-03-10

    申请号:US12871576

    申请日:2010-08-30

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30864 G06F17/30887

    摘要: Computer-readable media, computer systems, and computing devices facilitate enhancing a web index with uniform resource locator (URL)/non-encoding character (NEC) word pairs to facilitate relevance ranking of search results provided in response to a search query that includes NEC words. URLs are received from web pages and substrings extracted therefrom. Additional elements are received from the web page, word-broken into sequences of NEC words, and the NEC words are converted into encoding-language representations which are matched against the URL substrings to identify candidate URL/NEC pairs for utilization in relevance ranking.

    摘要翻译: 计算机可读介质,计算机系统和计算设备有助于利用统一的资源定位器(URL)/非编码字符(NEC)字对来增强网络索引,以便于响应于包括NEC的搜索查询提供的搜索结果的相关性排名 话。 从从其中提取的网页和子串接收URL。 从网页接收附加元素,将其分词成NEC字的序列,并将NEC字转换成与URL子串相匹配的编码语言表示,以识别候选URL / NEC对以用于相关性排名。

    ENHANCING SEARCH-RESULT RELEVANCE RANKING USING UNIFORM RESOURCE LOCATORS FOR QUERIES CONTAINING NON-ENCODING CHARACTERS
    4.
    发明申请
    ENHANCING SEARCH-RESULT RELEVANCE RANKING USING UNIFORM RESOURCE LOCATORS FOR QUERIES CONTAINING NON-ENCODING CHARACTERS 有权
    使用均匀资源定位器来增强搜索结果的相关性排序对包含非编码特征的查询

    公开(公告)号:US20120054192A1

    公开(公告)日:2012-03-01

    申请号:US12871576

    申请日:2010-08-30

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30864 G06F17/30887

    摘要: Computer-readable media, computer systems, and computing devices facilitate enhancing a web index with uniform resource locator (URL)/non-encoding character (NEC) word pairs to facilitate relevance ranking of search results provided in response to a search query that includes NEC words. URLs are received from web pages and substrings extracted therefrom. Additional elements are received from the web page, word-broken into sequences of NEC words, and the NEC words are converted into encoding-language representations which are matched against the URL substrings to identify candidate URL/NEC pairs for utilization in relevance ranking.

    摘要翻译: 计算机可读介质,计算机系统和计算设备有助于利用统一的资源定位器(URL)/非编码字符(NEC)字对来增强网络索引,以便于响应于包括NEC的搜索查询提供的搜索结果的相关性排名 话。 从从其中提取的网页和子串接收URL。 从网页接收附加元素,将其分词成NEC字的序列,并将NEC字转换成与URL子串相匹配的编码语言表示,以识别候选URL / NEC对以用于相关性排名。

    Automated Feature Selection Based on Rankboost for Ranking
    5.
    发明申请
    Automated Feature Selection Based on Rankboost for Ranking 有权
    基于排名的自动特征选择

    公开(公告)号:US20100076911A1

    公开(公告)日:2010-03-25

    申请号:US12238012

    申请日:2008-09-25

    IPC分类号: G06F15/18

    CPC分类号: G06F17/30864 G06N99/005

    摘要: A method using a RankBoost-based algorithm to automatically select features for further ranking model training is provided. The method reiteratively applies a set of ranking candidates to a training data set comprising a plurality of ranking objects having a known pairwise ranking order. Each round of iteration applies a weight distribution of ranking object pairs, yields a ranking result by each ranking candidate, identifies a favored ranking candidate for the round based on the ranking results, and updates the weight distribution to be used in next iteration round by increasing weights of ranking object pairs that are poorly ranked by the favored ranking candidate. The method then infers a target feature set from the favored ranking candidates identified in the iterations.

    摘要翻译: 提供了一种使用基于RankBoost的算法自动选择特征进行进一步排名模型训练的方法。 该方法重复地将一组排名候选应用于包括具有已知成对排序顺序的多个排名对象的训练数据集。 每轮迭代应用排序对象对的权重分布,由每个排名候选者产生排名结果,根据排名结果识别轮次的优选排名候选者,并通过增加下一次迭代更新要使用的权重分布 排名对象对的权重由受欢迎的排名候选人排名较差。 该方法然后从迭代中识别的优选排名候选推断目标特征集。

    Automated feature selection based on rankboost for ranking
    6.
    发明授权
    Automated feature selection based on rankboost for ranking 有权
    基于排名的自动功能选择

    公开(公告)号:US08301638B2

    公开(公告)日:2012-10-30

    申请号:US12238012

    申请日:2008-09-25

    IPC分类号: G06F7/00 G06F17/30 G06F15/18

    CPC分类号: G06F17/30864 G06N99/005

    摘要: A method using a RankBoost-based algorithm to automatically select features for further ranking model training is provided. The method reiteratively applies a set of ranking candidates to a training data set comprising a plurality of ranking objects having a known pairwise ranking order. Each round of iteration applies a weight distribution of ranking object pairs, yields a ranking result by each ranking candidate, identifies a favored ranking candidate for the round based on the ranking results, and updates the weight distribution to be used in next iteration round by increasing weights of ranking object pairs that are poorly ranked by the favored ranking candidate. The method then infers a target feature set from the favored ranking candidates identified in the iterations.

    摘要翻译: 提供了一种使用基于RankBoost的算法自动选择特征进行进一步排名模型训练的方法。 该方法重复地将一组排名候选应用于包括具有已知成对排序顺序的多个排序对象的训练数据集。 每轮迭代应用排序对象对的权重分布,由每个排名候选者产生排名结果,根据排名结果识别轮次的优选排名候选者,并通过增加下一次迭代更新要使用的权重分布 排名对象对的权重由受欢迎的排名候选人排名较差。 该方法然后从迭代中识别的优选排名候选推断目标特征集。

    RANKING MODEL ADAPTATION FOR SEARCHING
    7.
    发明申请
    RANKING MODEL ADAPTATION FOR SEARCHING 审中-公开
    排序模式适应搜索

    公开(公告)号:US20090276414A1

    公开(公告)日:2009-11-05

    申请号:US12112826

    申请日:2008-04-30

    IPC分类号: G06F17/30

    CPC分类号: G06F16/9535

    摘要: Search results provided by a search engine (e.g., for the Internet) are improved and/or made more accurate by addressing the limited availability of human labeled training data for certain domains (e.g., languages other than English, within certain date ranges, corresponding to queries over a certain length, etc.). More particularly, a ranking model trained on in-domain data, for which a small amount of human labeled training data (e.g., query/URL pairs) is available (e.g., languages other than English) is adjusted based upon out-domain data, for which a large amount of human labeled training data (e.g., query/URL pairs) is available (e.g., English). Thus, even though the resulting adapted in-domain ranking model is used in the context of in-domain data (e.g., non-English) to provide search results, the search results are improved because they are influenced by an abundance of, albeit out-domain, human labeled training data.

    摘要翻译: 搜索引擎提供的搜索结果(例如,对于互联网)进行改进和/或更准确地解决某些域名(例如,英语以外的语言,某些日期范围内的对应于 查询一定长度等)。 更具体地,针对域内数据进行训练的排名模型,基于域外数据来调整少量人类标记的训练数据(例如,查询/ URL对)可用(例如,除英语以外的语言) 为此,可以使用大量的人类标记的训练数据(例如,查询/ URL对)(例如,英语)。 因此,即使在域内数据(例如,非英语)的上下文中使用所产生的适应的域内排名模型来提供搜索结果,搜索结果被改进,因为它们受到丰富的影响,尽管 域名,人标签训练数据。