摘要:
The present invention discloses a scanning device of back-scatter imaging with a radiation beam, comprising: a radiation source; a fixed shield plate and a rotatable shield body disposed between the radiation source and a object to be scanned respectively, wherein the fixed shield plate is stationary with respect to the radiation source and the rotatable shield body is rotatable with respect to the fixed shield plate. The fixed shield plate is provided with a ray passing-through region thereon, which allows for a radiation beam from the radiation source to pass through the fixed shield plate, a ray incidence region and a ray emergence region are arranged on the rotatable shield body respectively, during the rotatable scanning of the rotatable shield body, the ray passing-through region of the fixed shield plate continuously intersects with the ray incidence region and the ray emergence region of the rotatable shield body to generate collimated holes for scanning. The ray passing-through region of the fixed shield plate is a rectilinear slit, the rotatable shield body is a cylinder, and the ray incidence and emergence regions are configured to be a series of small discrete holes disposed along a spiral line respectively. In addition, the present invention discloses a scanning method for back-scatter imaging with a radiation beam.
摘要:
The present invention discloses a scanning device of back-scatter imaging with a radiation beam, comprising: a radiation source; a fixed shield plate and a rotatable shield body disposed between the radiation source and a object to be scanned respectively, wherein the fixed shield plate is stationary with respect to the radiation source and the rotatable shield body is rotatable with respect to the fixed shield plate. The fixed shield plate is provided with a ray passing-through region thereon, which allows for a radiation beam from the radiation source to pass through the fixed shield plate, a ray incidence region and a ray emergence region are arranged on the rotatable shield body respectively, during the rotatable scanning of the rotatable shield body, the ray passing-through region of the fixed shield plate continuously intersects with the ray incidence region and the ray emergence region of the rotatable shield body to generate collimated holes for scanning. The ray passing-through region of the fixed shield plate is a rectilinear slit, the rotatable shield body is a cylinder, and the ray incidence and emergence regions are configured to be a series of small discrete holes disposed along a spiral line respectively. In addition, the present invention discloses a scanning method for back-scatter imaging with a radiation beam.
摘要:
Disclosed is a scanning device using radiation beam for backscatter imaging. The scanning device includes a radiation source; a stationary shield plate and a rotary shield body positioned respectively between the radiation source and the subject to be scanned, wherein the stationary shield plate is fixed relative to the radiation source, and the rotary shield body is rotatable relative to the stationary shield plate. The ray passing area permitting the rays from the radiation source to pass through the stationary shield plate is provided on the stationary shield plate, and ray incidence area and ray exit area are respectively provided on the rotary shield body. During the process of the rotating and scanning of the rotary shield body, the ray passing area of the stationary shield plate intersects consecutively with the ray incidence area and the ray exit area of the rotary shield body to form scanning collimation holes. Further, a scanning method using radiation beam for backscatter imaging is also provided.
摘要:
Disclosed is a scanning device using radiation beam for backscatter imaging. The scanning device includes a radiation source; a stationary shield plate and a rotary shield body positioned respectively between the radiation source and the subject to be scanned, wherein the stationary shield plate is fixed relative to the radiation source, and the rotary shield body is rotatable relative to the stationary shield plate. The ray passing area permitting the rays from the radiation source to pass through the stationary shield plate is provided on the stationary shield plate, and ray incidence area and ray exit area are respectively provided on the rotary shield body. During the process of the rotating and scanning of the rotary shield body, the ray passing area of the stationary shield plate intersects consecutively with the ray incidence area and the ray exit area of the rotary shield body to form scanning collimation holes. Further, a scanning method using radiation beam for backscatter imaging is also provided.
摘要:
The present invention discloses a millimeter-wave inspection apparatus. The millimeter-wave inspection apparatus comprises: optics devices, configured to receive millimeter-wave energy radiated from an object to be inspected and focus the received millimeter-wave energy; a radiometer receiving device configured to receive the focused millimeter-wave energy and transform the millimeter-wave energy into electrical signal; and an imaging device configured to generate a temperature image of the object to be inspected based on the electrical signal. Compared with the prior art, the millimeter-wave inspection apparatus of the present invention has a simple and compact structure; it would not be harmful to the human health by employing the passive millimeter-wave human body security inspection technology. With the above configuration, the contraband items to be concealed within the human clothing can be efficiently and effectively detected.
摘要:
The present invention discloses a millimeter-wave inspection apparatus. The millimeter-wave inspection apparatus comprises: optics devices, configured to receive millimeter-wave energy radiated from an object to be inspected and focus the received millimeter-wave energy; a radiometer receiving device configured to receive the focused millimeter-wave energy and transform the millimeter-wave energy into electrical signal; and an imaging device configured to generate a temperature image of the object to be inspected based on the electrical signal. Compared with the prior art, the millimeter-wave inspection apparatus of the present invention has a simple and compact structure; it would not be harmful to the human health by employing the passive millimeter-wave human body security inspection technology. With the above configuration, the contraband items to be concealed within the human clothing can be efficiently and effectively detected.
摘要:
Disclosed is a detector device, comprising: an adjustable positioning base and a detector module. The adjustable positioning base includes: a horizontal plate being able to fixedly connect onto an annular rotation table or disk; and a vertical plate extending from the horizontal plate and generally perpendicular to the horizontal plate. A horizontal through long groove is provided at one side of the vertical plate, and the detector module is able to fixedly installed in said horizontal through long groove of the adjustable positioning base. By employing the technical solution defined in the present invention, the detector device has a compact structure, and precision adjustment and positioning for the detector device can be achieved. In addition, the present invention also provides a CT inspection system having the above detector device.
摘要:
Disclosed is a detector device, comprising: an adjustable positioning base and a detector module. The adjustable positioning base includes: a horizontal plate being able to fixedly connect onto an annular rotation table or disk; and a vertical plate extending from the horizontal plate and generally perpendicular to the horizontal plate. A horizontal through long groove is provided at one side of the vertical plate, and the detector module is able to fixedly installed in said horizontal through long groove of the adjustable positioning base. By employing the technical solution defined in the present invention, the detector device has a compact structure, and precision adjustment and positioning for the detector device can be achieved. In addition, the present invention also provides a CT inspection system having the above detector device.
摘要:
A check process may be performed without rotation of a radiation source or detector. A CT scan security check device may include a radiation source and a detector forming a radiation detection area, a conveyer mechanism conveying an article along a path, and a multidimensional movement mechanism causing a relative displacement between the article and the radiation detection area in a vertical direction and causing the article to rotate about a vertical axis. A CT scan security check method may include: 1) displacing the article relative to the radiation detection area in the vertical direction; 2) rotating the article; 3) during the checked article passing through the radiation detection area, obtaining data regarding a radiation ray that passes through the article; and 4) transmitting the data for a CT arithmetic reconstruction.
摘要:
Disclosed is a millimeter-wave receiving device. The device includes at least one radiometer; and a positioning assembly for holding the radiometer, wherein the positioning assembly comprises: a first positioning member having a first surface; a second positioning member having a second surface, the first surface of the first positioning member and the second surface of the second positioning member holding the radiometer in opposite to each other. With the configuration according to the present invention, the at least one radiometer in the millimeter-wave receiving device can be located in all of freedoms on basis of various design requirements of the radiation path to ensure that the radiometer can be arranged in desired receiving positions.