摘要:
A method for detecting target objects in a three dimensional (3D) image volume of an anatomical structure is disclosed. A set of candidate locations in the image volume are obtained. For each candidate location, sub-volumes of at least two different scales are cropped out. Each sub-volume comprises a plurality of voxels. For each of the sub-volumes, each sub-volume is rotated in at least two different orientations. A shape classifier is applied to each sub-volume. If the voxels in the sub-volume pass the shape classifier, a gradient direction is computed for the voxels. If the gradient direction for the voxels is one of a predefined orientation, a probability classifier is applied to the voxels. A probability measure computed by the probability classifier as a confidence measure is used for the sub-volume. If the confidence measure is above a predetermined threshold value, the sub-volume is determined to contain the target object.
摘要:
A system and method for using learned discriminative models to segment a border of an anatomical structure in a three dimensional (3D) image is disclosed. A discriminative probability model is computed for each voxel in the 3D image. Thresholding is performed on each discriminative probability model. One or more two dimensional (2D) slices of the thresholded 3D image along X-Y planes are obtained. Seed regions are selected in the 2D slices. Morphological region growing is performed on the selected seed regions. An initial 3D segmentation is obtained. Boundary evolution is performed on the initial 3D segmentation. The segmented anatomical structure is removed. in the original 3D image.
摘要:
A system and method for using learned discriminative models to segment a border of an anatomical structure in a three dimensional (3D) image is disclosed. A discriminative probability model is computed for each voxel in the 3D image. Thresholding is performed on each discriminative probability model. One or more two dimensional (2D) slices of the thresholded 3D image along X-Y planes are obtained. Seed regions are selected in the 2D slices. Morphological region growing is performed on the selected seed regions. An initial 3D segmentation is obtained. Boundary evolution is performed on the initial 3D segmentation. The segmented anatomical structure is removed. in the original 3D image.
摘要:
A method for detecting target objects in a three dimensional (3D) image volume of an anatomical structure is disclosed. A set of candidate locations in the image volume are obtained. For each candidate location, sub-volumes of at least two different scales are cropped out. Each sub-volume comprises a plurality of voxels. For each of the sub-volumes, each sub-volume is rotated in at least two different orientations. A shape classifier is applied to each sub-volume. If the voxels in the sub-volume pass the shape classifier, a gradient direction is computed for the voxels. If the gradient direction for the voxels is one of a predefined orientation, a probability classifier is applied to the voxels. A probability measure computed by the probability classifier as a confidence measure is used for the sub-volume. If the confidence measure is above a predetermined threshold value, the sub-volume is determined to contain the target object.
摘要:
A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.
摘要:
The present invention is directed to a system and method for populating a database with a set of image sequences of an object. The database is used to detect a tubular structure in the object. A set of images of objects are received in which each image is annotated to show a tubular structure. For each given image, a Probabilistic Boosting Tree (PBT) is used to detect three dimensional (3D) circles. Short tubes are constructed from pairs of approximately aligned 3D circles. A discriminative joint shape and appearance model is used to classify each short tube. A long flexible tube is formed by connecting all of the short tubes. A tubular structure model that comprises a start point, end point and the long flexible tube is identified. The tubular structure model is stored in the database.
摘要:
A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.
摘要:
The present invention is directed to a system and method for populating a database with a set of image sequences of an object. The database is used to detect a tubular structure in the object. A set of images of objects are received in which each image is annotated to show a tubular structure. For each given image, a Probabilistic Boosting Tree (PBT) is used to detect three dimensional (3D) circles. Short tubes are constructed from pairs of approximately aligned 3D circles. A discriminative joint shape and appearance model is used to classify each short tube. A long flexible tube is formed by connecting all of the short tubes. A tubular structure model that comprises a start point, end point and the long flexible tube is identified. The tubular structure model is stored in the database.
摘要:
A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.
摘要:
A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.