摘要:
This disclosure relates to configuration tools for interactive agents, sometimes referred to as bots, chatbots, virtual robots, or talkbots. Such interactive agents utilize slots for organizing and storing data received as inputs and displayed as outputs. These slots can be configured such that a slot is temporary and does not persist beyond its source dialog. Slots can also be configured such that a slot is pre-populated with information contain in incoming passed parameters.
摘要:
The communication system includes a core system having a processor storing user variables representing user-specific information. A messaging system supports communication between a user and an automated bot agent over at least one user-chosen channel employing channel-agnostic context variables. A runtime system mediates a conversation session between user and bot agent, using at least one predefined context variable. A context mapping data store stores a mapping configuration representing a correlation between the channel-agnostic variable of the user-chosen channel and a field in the core CRM system. Using the context mapping data store, the messaging system responds to a communication from the user by querying the context mapping data store to acquire and pass to the runtime system the resolved mapping configuration values corresponding to the user-chosen channel for each defined context variable.
摘要:
Disclosed herein are embodiments for a visual bot builder. An embodiment operates by visually displaying, within a user interface, a plurality of selectable chat bot functions associated with a first dialog. A first selection of one of the bot functions is received. It is determined that the first selection corresponds to calling a selectable second dialog from a one or more previously configured dialogs. A link to the one or more selectable previously configured dialogs is provided and a second selection of one of the previously configured dialogs is received as the second dialog. The execution of the first dialog is linked to an execution of the second dialog. A preview of the execution of the first dialog including the second dialog is provided.
摘要:
The communication system includes a core system having a processor storing user variables representing user-specific information. A messaging system supports communication between a user and an automated bot agent over at least one user-chosen channel employing channel-agnostic context variables. A runtime system mediates a conversation session between user and bot agent, using at least one predefined context variable. A context mapping data store stores a mapping configuration representing a correlation between the channel-agnostic variable of the user-chosen channel and a field in the core CRM system. Using the context mapping data store, the messaging system responds to a communication from the user by querying the context mapping data store to acquire and pass to the runtime system the resolved mapping configuration values corresponding to the user-chosen channel for each defined context variable.
摘要:
Computer implemented methods and systems are provided for executing tests in a system that includes a user system and a cloud-based computing platform. The user system includes a processing system, memory and an input system that receives input parameters specified by a user of the user system. The memory can store a test class filter module executable by the processing system. Upon being executed by the processing system, the test class filter module can, based on one or more of the input parameters, group and filter test class identifiers to generate a unique test class identifier array of filtered test class identifiers that correspond to a particular subset of tests that are to be executed during testing of an application. A test execution engine can then execute the particular subset of tests corresponding to the filtered test class identifiers specified in the unique test class identifier array.
摘要:
Computer implemented methods and systems are provided for computing code coverage in a system that includes a user system and a cloud-based computing platform. The user system includes a processing system, memory and an input system that receives input parameters specified by a user of the user system. The memory can store a source class filter module executable by the processing system. Upon being executed by the processing system, the source class filter module can, based on one or more of the input parameters, group and filter source class identifiers to generate a unique source class identifier array of filtered source class identifiers that correspond to a particular subset of source classes that targeted code coverage metrics are to be computed for during code coverage computations when testing an application. A code coverage computation unit can then compute the targeted code coverage metrics for the particular subset of source classes corresponding to the filtered source class identifiers of the unique source class identifier array.
摘要:
Computer implemented methods and systems are provided for executing tests in a system that includes a user system and a cloud-based computing platform communicatively coupled to the user system. The user system includes a processing system, memory and an input system that receives input parameters specified by a user of the user system. The memory can store a test class filter module executable by the processing system. Upon being executed by the processing system, the test class filter module can, based on one or more of the input parameters, group and filter test class identifiers to generate a unique test class identifier array of filtered test class identifiers that correspond to a particular subset of tests that are to be executed during testing of an application. A test execution engine of the cloud-based computing platform can then execute the particular subset of tests corresponding to the filtered test class identifiers specified in the unique test class identifier array.
摘要:
In accordance with embodiments, there are provided mechanisms and methods for facilitating client-based control and experience of application programming interfaces in an on-demand services environment according to one embodiment. In one embodiment and by way of example, a method comprises offering, by application programming interface (API)-usage server device (“API-usage device”), a client interface package including a user interface for facilitating client-based control of APIs at a client computing device over a network. The method may further include facilitating, by the API-usage device, the client-based control of the APIs using an API menu accessible through the user interface, where the API menu is selectively populated with one or more of documentation, working code samples, and application protocol clients.
摘要:
In accordance with embodiments, there are provided mechanisms and methods for facilitating client-based control and experience of application programming interfaces in an on-demand services environment according to one embodiment. In one embodiment and by way of example, a method comprises offering, by application programming interface (API)-usage server device (“API-usage device”), a client interface package including a user interface for facilitating client-based control of APIs at a client computing device over a network. The method may further include facilitating, by the API-usage device, the client-based control of the APIs using an API menu accessible through the user interface, where the API menu is selectively populated with one or more of documentation, working code samples, and application protocol clients.
摘要:
Computer implemented methods and systems are provided for computing code coverage in a system that includes a user system and a cloud-based computing platform. The user system includes a processing system, memory and an input system that receives input parameters specified by a user of the user system. The memory can store a source class filter module executable by the processing system. Upon being executed by the processing system, the source class filter module can, based on one or more of the input parameters, group and filter source class identifiers to generate a unique source class identifier array of filtered source class identifiers that correspond to a particular subset of source classes that targeted code coverage metrics are to be computed for during code coverage computations when testing an application. A code coverage computation unit can then compute the targeted code coverage metrics for the particular subset of source classes corresponding to the filtered source class identifiers of the unique source class identifier array.