Abstract:
An optical fibre drop cable for suspension installation includes sheathing having a first portion containing a strengthening arrangement for supporting the cable in a suspension installation and a second portion that is separable from the first portion. The second sheathing portion contains a plurality of electrical conductors. The first sheathing portion defines at least one passage for optical fibers.
Abstract:
An apparatus (12) is provided for use in determining a length at least representative of the length of a tube that defines a passage in an optical fibre cable (10) along which an optical fibre unit can be installed by blowing. The apparatus (12) comprises a pressure reservoir (32) in which a gas at a known pressure can be stored, outlet piping (34) connected with the pressure reservoir (32) and having an outlet end spaced from the reservoir for connection to a tube of the optical fibre cable (10). The apparatus has a pressure detecting arrangement (42) for detecting gas pressure in a tube connected with the outlet end of the outlet piping (34). In use, the gas stored in the pressure reservoir (32) is released into the tube and knowing the pressure of the gas when stored in the pressure reservoir, the volume of the reservoir and the pressure of gas in the tube after release of the gas from the pressure reservoir, it is possible to determine the volume of the passage defined by the tube and knowing that volume, it is possible to determine the length of the tube.
Abstract:
An assembly 10 for use in connecting optical fibers to an optical fiber device having input and output tails comprises a plurality of housings 12 for housing optical fiber connections. Each housing 12 is typically mounted to, and supported by a respective routeing member 14. The routeing members are rigidly connected one to another such that the housings are arranged in an aligned bank. Each housing is pivotable for providing access thereto from the stowed position out of alignment with the other housings.
Abstract:
An apparatus for coating an optical fibre with a selected one of a plurality of different resins includes respective reservoirs for the resins, an applicator for applying a resin coating to the optical fibre and a distributor between the reservoirs and the applicator including a valve device which is operable for putting any selected one of the reservoirs in flow communication with the applicator. The valve device includes a first body defining a plurality of inlet passages each of which is interconnected to a respective reservoir by a respective inlet conduit and a second body defining an outlet passage which is interconnected to the applicator via an outlet conduit. A flow control device is disposed between the bodies and the bodies are relatively moveable for putting any selected one of the inlet passages in alignment with the outlet passage. The flow control device has a first position relative to the second body for blocking all of the inlet passages and the outlet passage and a second position relative to the second body for allowing flow to the outlet passage from an inlet passage aligned therewith.
Abstract:
An electrically tunable optical fibre structure comprising a length of optical fibre which includes two uniformly spaced monomode optical cores (1,2) located within a common cladding (4) so as to provide two optical guidance paths, the optical characteristics of at least the cores being different such as to give the two guidance paths different propagation constants the values of which coincide for a predetermined wavelength, so that optical energy at said wavelength will repeatedly transfer from one core to the other, characterized in that two electrodes (6,8,20) are provided within the cladding and are located with at least one core between them for applying an electrical field to that core whereby to alter its propagation constant by the electro-optic effect and hence to alter said wavelength, the structure thereby being tunable. Methods of making such a structure are also disclosed.
Abstract:
An attenuating device 10 for use with signal carrying optical fibres 14 comprises a length 18 of optical fibre coiled within a casing 16. The optical fibre length 18 is of higher attenuation per unit length than the optical fibres 14 and the device comprises means, for example optical fibre tails 22,24 fusion spliced at 20,22 to the opposite ends of the length 18 for optically connecting those ends to the fibres 14.
Abstract:
A round birefraction dielectric wave-guide has in section a central round zone with a constant, or substantially constant, refractive index n1, an outer zone preferably with a constant refractive index n2 and an intermediate zone divided into 8 (or multiples of 8) angular sectors. Respective alternate sectors have refractive indices n3 and n4. Refractive index n3 may be constant but index n4 varies in inverse proportion to the square of the distance from the axis of the waveguide. N1 is greater than n2, n1 is greater tha n3 and n4 lies between n1 and n2. The wave-guide is subjected to torsion around the longitudinal axis of symmetry thereof and/or is spirally wound around a cylinder.
Abstract:
An electrical termination comprises a cable lug 1 fitted to an end of an electric cable 3 and connected to a terminal 5 provided with an insulating bushing 6. An insulating shroud 13 comprising a rigid sleeve 14 and a removable closure element 15 fits over the terminal in spaced relationship thereto, with the space between the sleeve 14 and the bushing 6 at the end portion 19 of the sleeve 14 opposite the closure element 15 being closed by an annular insulating member 18. The sleeve and the closure element are provided with cooperating open end slots 20, 21 which define an aperture in the shroud in which a further insulating sleeve 23 fits so as to extend outwardly from the shroud. The cable lug 1 passes through the sleeve 23.
Abstract:
A cable length of the type comprising a conductor, polymeric insulation 3 over the conductor, a semiconducting screen 4 over the polymeric insulation, a fault carrying screen 5 over the semiconducting screen, and a protective sheath 6 over the semiconducting screen has at least the leading end thereof partially prepared for jointing prior to laying of the cable. At the leading and or each end the cable is stripped back over successive increasing lengths 7, 8, 9 to its polymeric insulation 3, its semiconducting screen 4 and its fault carrying screen 5. A semiconducting sleeve 13 fits over the protective sheath 6, extends over the stripped lengths of fault carrying screen 5 and semiconducting screen 4 and abuts the end portion of the latter. A clamp 12 disposed within the sleeve 13 terminates the fault carrying screen 5 and a sleeve 19 of polymeric insulation is provided on the stripped length of polymeric insulation 3. The sleeves 13 and 19 have the same outside diameter and thus the cable end has a generally cylindrical form with an outside diameter such as the outside diameter of the cable. This facilitates laying of the cable when the end is the leading end and has to be pulled through a trench. The cable as partially prepared is wound on a drum.
Abstract:
A tubular sleeve 12 is applied over an elongate body 10 which has a diameter greater than the inner diameter of the sleeve. An end portion 12a of the sleeve is engaged over an end portion of the body 10 to form a partial fluid-tight seal therewith. The opposite end portion of the sleeve is temporarily closed and fluid under pressure is introduced to the interior of the sleeve to inflate it sufficiently to enable it to be floated along the elongate body. Then the sleeve is displaced along the body. The fluid may be air introduced to the sleeve interior through a valve 14 which also temporarily closes the sleeve end.