摘要:
A method of transmitting packets over a network includes steps of partitioning a transmission interval into discrete time slots and reaching agreement between a transmitting node and receiving node as to when the transmitting node will transmit packets. The intended receiving node sends a reception map to the transmitter indicating time slots that have not yet been allocated. The transmitter proposes a delivery schedule including time slots that it will use for transmission. After agreement by the receiving node, the transmitter transmits packets according to the agreed-upon schedule. Other transmitters can similar arrange to transmit during time slots not already allocated for the receiving node.
摘要:
A method of transmitting packets over a network includes steps of transmitting a first plurality of test packets during a first plurality of time locations that are coarsely spaced apart in time; determining which of the first plurality of time locations corresponds to favorable network traffic conditions; transmitting a second plurality of test packets over the network during a second plurality of time locations that are finely spaced apart in time, wherein the second plurality of time locations are selected on the basis of favorable network traffic conditions; determining which of the second plurality of time locations corresponds to favorable network traffic conditions; and transmitting data packets over the network using one or more favorable time locations determined by the finely spaced test packets. The method can be used to “zero in” on congested network periods by detecting differences in packet latencies among test packets.
摘要:
A method of transmitting compressed video packets over a network includes steps of partitioning transmission interval into discrete time slots; sending scheduling packets over the network from the transmitting node to the receiving node; evaluating the response of the receiving node to determine reliability of the network at different time slots; and selecting one or more time slots for delivery of the compressed video packets according to the evaluation step. Other transmitters can similarly arrange to transmit during time slots not already allocated for the receiving node.
摘要:
A method of transmitting packets over a network includes steps of transmitting a first plurality of test packets during a first plurality of time locations that are coarsely spaced apart in time; determining which of the first plurality of time locations corresponds to favorable network traffic conditions; transmitting a second plurality of test packets over the network during a second plurality of time locations that are finely spaced apart in time, wherein the second plurality of time locations are selected on the basis of favorable network traffic conditions; determining which of the second plurality of time locations corresponds to favorable network traffic conditions; and transmitting data packets over the network using one or more favorable time locations determined by the finely spaced test packets. The method can be used to “zero in” on congested network periods by detecting differences in packet latencies among test packets.
摘要:
A method of transmitting packets over a network includes steps of partitioning a packet delivery schedule into discrete time slots; transmitting a plurality of test packets from a first endpoint on the network to an intended recipient in the network using different time slots; evaluating the reliability of the network to transmit the plurality of test packets in each time slot; and selecting one or more time slots in the delivery schedule according to the evaluation step.
摘要:
A method of transmitting packets over a network includes steps of partitioning a packet delivery schedule into discrete time slots; transmitting a plurality of test packets from a first endpoint on the network to an intended recipient in the network using different time slots; evaluating the reliability of the network to transmit the plurality of test packets in each time slot; and selecting one or more time slots in the delivery schedule according to the evaluation step.
摘要:
A network connection device bridges a first network that uses a first packet delivery scheduling scheme and a second network that uses a different packet delivery scheduling scheme. The network connection device translates a request to communicate over the first network into a request to communicate over the second network, thus bridging the two networks. A negotiated packet delivery scheduling scheme permits endpoints to negotiate scheduled delivery times for packets, while an empirically determined packet delivery scheme tests various time interval locations in a network to determine favorable time locations for transmission. The two protocols are bridged by finding compatible overlaps between time interval locations in the two networks. This can provide error-free delivery with low jitter among packets.
摘要:
A network connection device bridges a first network that uses a negotiated packet delivery scheduling scheme and a second network that uses an empirically determined packet delivery scheduling scheme. The network connection device translates a request to communicate over the first network into a request to communicate over the second network, thus bridging the two networks. The negotiated packet delivery scheduling scheme permits endpoints to negotiate scheduled delivery times for packets, while the empirically determined packet delivery scheme tests various time interval locations in a network to determine favorable time locations for transmission. The two protocols are bridged by finding compatible overlaps between time interval locations in the two networks. This can provide error-free delivery with low jitter among packets.
摘要:
A network connection device bridges a first network that uses a negotiated packet delivery scheduling scheme and a second network that uses an empirically determined packet delivery scheduling scheme. The network connection device translates a request to communicate over the first network into a request to communicate over the second network, thus bridging the two networks. The negotiated packet delivery scheduling scheme permits endpoints to negotiate scheduled delivery times for packets, while the empirically determined packet delivery scheme tests various time interval locations in a network to determine favorable time locations for transmission. The two protocols are bridged by finding compatible overlaps between time interval locations in the two networks. This can provide error-free delivery with low jitter among packets.