摘要:
The present disclosure relates to a robotically controlled satellite refueling tool and associated robotically controlled support and site preparation tools which facilitates on-orbit refueling by teleoperation of fill/drain valves of various designs and dimensions on satellites not originally prepared for on-orbit servicing, through the installation of quick connect safety valves, using vision-based feedback as well as feedback from sensors embedded in the refueling tool to operate a suite of adaptable and adjustable mechanisms. The refueling tool has an open architecture to allow a refueling tool vision system to see the fill/drain valve and the section of the refueling tool that is engaged with the fill/drain valve. The support tools include a blanket cutter tool, a blanket handler tool, a wire cutter tool, a gripper tool, and the site preparation tools include a B-nut removal tool and a crush seal removal tool. Each of these tools includes a common base structure which is interfaced to the end effector of the robotic arm for transmitting rotation and torque to the various tools.
摘要:
A spacecraft bus system described herein includes a propulsion assembly, a top plate assembly, and a bottom plate assembly. Each one of the propulsion assembly, the top plate assembly, and the bottom plate assembly is configured to be separately assembled and tested for spaceworthiness. Also described herein is a propulsion assembly for use with a spacecraft. The propulsion assembly includes a propellant tank containing propellant therein, at least one thruster, and a frame configured for supporting the propellant tank and the at least one thruster thereon. The propulsion assembly, as an individual module, is configured to be assembled and subjected to testing related to spaceworthiness. Additionally, the frame may be further configured for attachment to other components of the spacecraft, after being assembled and subjected to testing, without modification to the propulsion assembly or the other components of the spacecraft.
摘要:
A spacecraft includes a plurality of deployable module elements, at least one of the deployable module elements including a robotic manipulator, the spacecraft being reconfigurable from a launch configuration to an on-orbit configuration. In the launch configuration, the deployable module elements are disposed in a launch vehicle in a first arrangement. In the on-orbit configuration, the deployable module elements are disposed in a second configuration. The spacecraft is self-assembled by the robotic manipulator reconfiguring the spacecraft from the launch configuration, through a transition configuration, to the on-orbit configuration. The deployable module elements may be in a stacked arrangement in the launch configuration and may be in a side-by-side arrangement in the on-orbit configuration.
摘要:
A spacecraft including a main body structure and at least a first deployable element is reconfigured from a launch configuration to an on-orbit configuration. In the launch configuration, the first deployable element is mechanically attached with the spacecraft main body structure by way of a first arrangement. In the on-orbit configuration, the first deployable element is mechanically attached with the spacecraft main body structure by way of a second arrangement. Reconfiguring the spacecraft includes detaching the first deployable element from the first arrangement, moving the first deployable element with respect to the spacecraft main body structure; and attaching the first deployable element to the second arrangement.
摘要:
The present invention provides a capture mechanism for capturing and locking onto the Marman flange located on the exterior surfaces of spacecraft/satellites. The capture mechanism achieves its goal of quickly capturing a client spacecraft by splitting the two basic actions involved into two separate mechanisms. One mechanism performs the quick grasp of the target while the other mechanism rigidises that grasp to ensure that the target is held as firmly as desired.
摘要:
A rigidizing latch assembly, in embodiments, is a robotically compatible aerospace attachment mechanism may be used to rigidly attach units to a structure and typically comprises a male latch and a receptacle configured to cooperatively couple. The male latch typically comprises a male latch housing and a latch assembly movably disposed within the male latch housing; a driver operatively in communication with a latch support; a male latch core; a driver interface access port; and one or more extraction feet operatively in communication with the driver. The receptacle comprises a receptacle housing sized to receive a lower portion of the male latch housing; a positioning target adapted to provide a visual positioning targeting cue; and one or more latch interfaces dimensioned to releasably mate with a corresponding lead-in guide of the plurality of lead-in guides.
摘要:
A system and method of space exploration with a human-controlled proxy robot surrogates is disclosed. The method includes: training the human controlled proxy robot surrogates using human handlers; controlling the human-controlled proxy robot surrogates using the human handlers; and deploying a plurality of human-controlled proxy robot surrogates for extraterrestrial missions, missions on Earth, the Moon, and near-Earth locations. Each of the human-controlled proxy robot surrogates are in communication with each of the human handlers and wherein each one of the plurality of proxy robot surrogates is paired with each one of the plurality of human handlers. The human-controlled proxy robot surrogates further comprise an artificial intelligence (AI). The artificial intelligence of the disclosed method includes learned behavior.
摘要:
A method for autonomously constructing structural bodies in a zero gravity environment utilizes an assembly line space structure to fabricate segments for constructing a modular space structure. An assembly housing provides an open ended structure through which materials are processed in order to construct a segment. The materials are loaded into a plurality of workstations positioned along the assembly housing through the use of a plurality of external manipulators adjacently connected to the assembly housing. Each of the plurality of workstations provides the equipment for sequentially loading materials into the assembly housing. An assembly line conveyor, positioned throughout the plurality of workstations, guides materials through the assembly housing as the materials are mated to form the segment. Upon completion of the segment, a plurality of segment transport units transports the segment to an orbital construction site, wherein the segment is mated with subsequent segments to form the space station.
摘要:
A spacecraft system and method includes a platform with a dock and an umbilical payout device. A robot is connected to an umbilical paid out by the umbilical payout device and is repeatedly deployable from the dock. The robot includes one or more imagers, an inertial measurement unit, and a plurality of thrusters. A command module receives image data from the one or more robot imagers and orientation data from the inertial measurement unit. An object recognition module is configured to recognize one or more objects from the received image data. The command module determines the robot's orientation with respect to an object and issues thruster control commands to control movement of the robot based on the robot's orientation. The combination of the space platform and robot on umbilical line can be used for towing another object to different orbital location, inspection including self-inspection of the robot carrying platform and for robotic servicing.
摘要:
A device for determining the operational condition of a mechanical apparatus (11-15) mounted in or to a spacecraft (10) which includes an acceleration pickup (20) attached to the spacecraft (10) for measuring the acceleration of the spacecraft (10), and an operational condition determination device with a memory for prestored known acceleration patterns of the apparatus (11-15). The acceleration patterns or parameters of the spacecraft (10) detected by the acceleration pickup (20) are compared with the known acceleration patterns or parameters of the apparatus (11-15) from the memory to determine the operational condition of the apparatus (11-15).