摘要:
The present invention relates to a bioengineering strain for production of novel microorganism-originated fungicides and uses thereof. The bioengineering strain for production of microorganism-originated fungicides of the present invention is obtained by transforming a phzH gene recombination expression plasmid into a strain producing phenazine-1-carboxylic acid, wherein the bioengineering strain produces phenazine-1-carboxamide. The present invention utilizes an existing strain producing phenazine-1-carboxylic acid to carry the phzH gene recombination expression plasmid, thereby achieving efficient expression of the phzH gene and transforming phenazine-1-carboxylic acid into phenazine-1-carboxamide. The present invention further discloses uses of the bioengineering strain, including a microorganism-originated fungicide produced by the bioengineering strain through fermentation, and preparation and application of the microorganism-originated fungicide. The antifungal activity of phenazine-1-carboxamide is not influenced by the acidity under which it is used, so that it has a stabilized antifungal activity and can be more effective in prophylaxis and treatment of crop diseases.
摘要:
The present invention relates to a bioengineering strain for production of novel microorganism-originated fungicides and uses thereof. The bioengineering strain for production of microorganism-originated fungicides of the present invention is obtained by transforming a phzH gene recombination expression plasmid into a strain producing phenazine-1-carboxylic acid, wherein the bioengineering strain produces phenazine-1-carboxamide. The present invention utilizes an existing strain producing phenazine-1-carboxylic acid to carry the phzH gene recombination expression plasmid, thereby achieving efficient expression of the phzH gene and transforming phenazine-1-carboxylic acid into phenazine-1-carboxamide. The present invention further discloses uses of the bioengineering strain, including a microorganism-originated fungicide produced by the bioengineering strain through fermentation, and preparation and application of the microorganism-originated fungicide. The antifungal activity of phenazine-1-carboxamide is not influenced by the acidity under which it is used, so that it has a stabilized antifungal activity and can be more effective in prophylaxis and treatment of crop diseases.