摘要:
Provided is a Coriolis flow sensor assembly that includes a flow tube configured to provide a flow path through the flow tube. Further, the Coriolis flow sensor assembly includes a mechanical drive assembly configured to drive an oscillation of the flow tube while fluid is flowing via an oscillation surface. The Coriolis flow sensor assembly includes an interface fixedly coupled to the oscillation surface of the mechanical drive assembly and configured to receive the flow tube.
摘要:
Motion is induced in a conduit such that the conduit vibrates in a major mode of vibration having a major amplitude and a minor mode of vibration having a minor amplitude. The major amplitude is larger than the minor amplitude, the major mode of vibration has a first frequency of vibration and the minor mode of vibration has a second frequency of vibration, and the minor mode of vibration interferes with the major mode of vibration to cause a beat signal having a frequency related to the first frequency of vibration and the second frequency of vibration. The frequency of the beat signal is determined, and the second frequency of vibration is determined based on the determined frequency of the beat signal.
摘要:
The viscometer provides a viscosity value (X0) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X0) using the two intermediate values (X1, X2). The first internal intermediate value (X1) is preferably normalized by means of an amplitude control signal (yAM) for the excitation current (iexc), the amplitude control signal corresponding with the vibrations of the flow tube. As a result, the viscosity value (X0) provided by the viscometer is highly accurate and robust, particularly independently of the position of installation of the flow tube.
摘要:
The viscometer provides a viscosity value (Xη) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (Xη) using the two intermediate values (X1, X2). The first internal intermediate value (X1) is preferably normalized by means of an amplitude control signal (yAM) for the excitation current (iexc), the amplitude control signal corresponding with the vibrations of the flow tube. As a result, the viscosity value (Xη) provided by the viscometer is highly accurate and robust, particularly independently of the position of installation of the flow tube.
摘要:
The viscometer provides a viscosity value (Xη) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (Xη) using the two intermediate values (X1, X2). The first internal intermediate value (X1) is preferably normalized by means of an amplitude control signal (yAM) for the excitation current (iexc), the amplitude control signal corresponding with the vibrations of the flow tube. As a result, the viscosity value (Xη) provided by the viscometer is highly accurate and robust, particularly independently of the position of installation of the flow tube.
摘要:
The measuring system comprises: a vibration element for guiding flowing medium and having a lumen; and a vibration element, which is adapted to be contacted, at least at times, by a part of the medium. Additionally, the measuring system includes at least two oscillation exciters for exciting resonant oscillations of the respective vibration elements, two mutually spaced oscillation sensors for registering vibrations of the vibration element, each of which generates an oscillatory signal dependent on vibrations of the vibration element, as well as at least one oscillation sensor for registering vibrations of the vibration element and generating, dependent on vibrations of the vibration element, an oscillatory signal, which has a signal frequency corresponding to a resonant frequency, of the vibration element. Moreover, the measuring system also comprises a measuring and operating electronics, which based on a phase difference, existing between the oscillation signals and based on the signal frequency of the oscillation signal generates a measured value representing the volume flow rate, respectively the volume flow.
摘要:
Descriptions are provided for implementing flowmeter zero checking techniques. In operating a flowmeter, it may be the case that, even if previously calibrated, the flowmeter will produce erroneous measurements, e.g., will indicate a non-zero flow during a period of zero flow. Therefore, zero checking features are provided that allow for fast and accurate determinations of the zero-flow values, for use in adjusting later measurements. The zero-checking features include a button attached to an exterior of a flowmeter, so that it is easily accessible to an operator of the flowmeter. The button, in conjunction with an internal zero checking system, allows for a display of a zero value in response to a request from the operator of the flowmeter.
摘要:
Motion is induced in a conduit that contains a fluid. The motion is induced such that the conduit oscillates in a first mode of vibration and a second mode of vibration. The first mode of vibration has a corresponding first frequency of vibration and the second mode of vibration has a corresponding second frequency of vibration. At least one of the first frequency of vibration or the second frequency of vibration is determined. A phase difference between the motion of the conduit at a first point of the conduit and the motion of the conduit at a second point of the conduit is determined. A quantity based on the phase difference and the determined frequency is determined. The quantity includes a ratio between the first frequency during a zero-flow condition and the second frequency during the zero-flow condition. A property of the fluid is determined based on the quantity.
摘要:
A method for operating a Coriolis mass flowmeter in which a simple and reliable detection of a multi-phase flow is implemented by determining at least one first measured value for at least one state variable that is dependent on the amplitude in a multi-phase medium, exciting the measuring tube with the oscillation generator to oscillate at a predetermined oscillation frequency and a first amplitude, and to oscillate with the excitation frequency and a second amplitude, detecting the resulting oscillation of the measuring tube and determining at least a second measured value for the state variable that is dependent on the amplitude in a multi-phase medium from the determined resulting oscillation, and using the deviation of at least one of the first measured value from at least a corresponding second value as an indicator for the presence of a multi-phase flow.
摘要:
Motion is induced in a conduit that contains a fluid. The motion is induced such that the conduit oscillates in a first mode of vibration and a second mode of vibration. The first mode of vibration has a corresponding first frequency of vibration and the second mode of vibration has a corresponding second frequency of vibration. At least one of the first frequency of vibration or the second frequency of vibration is determined. A phase difference between the motion of the conduit at a first point of the conduit and the motion of the conduit at a second point of the conduit is determined. A quantity based on the phase difference and the determined frequency is determined. The quantity includes a ratio between the first frequency during a zero-flow condition and the second frequency during the zero-flow condition. A property of the fluid is determined based on the quantity.