Abstract:
Embodiments of present invention provide various device assemblies for digital communication. The device assemblies may include a main printed-circuit-board (PCB); and an OSA-on-daughter-board (OODB) directly connected to the main PCB. The OODB has an optical sub-assembly (OSA) wire-bonded onto a daughter PCB. In one embodiment, the daughter PCB includes a flexible printed-circuit (FPC) sheet connecting the OODB directly to the main PCB. In another embodiment, the main PCB includes a FPC sheet connecting the main PCB directly to the OODB. In one embodiment, the connection may be made through an anisotropic conductive film or an anisotropic conductive adhesive.
Abstract:
A method of resource allocation for Channel State Information (CSI) feedback is provided, which comprises the following steps of: configuring, for a User Equipment (UE), a CSI feedback mode for each of a plurality of coordinated cells; allocating feedback resources required for CSI feedback by the UE for each of the plurality of coordinated cells based on the configured feedback modes, such that the CSI feedbacks for different coordinated cells will not collide with each other within one sub-frame; and notifying the configured feedback modes and the allocated feedback resources to the UE. In addition, a method of Channel State Information (CSI) feedback is provided, which comprises the following steps of: receiving, at a User Equipment (UE), from a Base Station (BS) information on configured feedback modes and allocated feedback resources for CSI feedback for a plurality of coordinated cells; feeding, by the UE, the CSI of the plurality of coordinated cells back to the BS over the allocated feedback resources based on the configured feedback modes; and solving, when feedback types underlying different feedback modes collide with each other within one sub-frame, the collision based on a collision solution rule.
Abstract:
In a mobile communication system of the present invention, a base station apparatus and mobile station apparatus (user device) communicate each other on a plurality of downlink component carriers and a plurality of uplink component carriers. And while the mobile station apparatus (user device) transmit an uplink data to the base station apparatus on the plurality of uplink component carriers, the mobile station apparatus (user device) transmit a scheduling request for requesting uplink resource for the uplink data to the base station apparatus using a physical uplink control channel (PUCCH) only on a specific uplink component carrier of the plurality of uplink component carriers.
Abstract:
Integrated performance monitoring (PM); optical layer operations, administration, maintenance, and provisioning (OAM&P); alarming; amplification, or the like is described in optical transceivers, such as multi-source agreement (MSA)-defined modules. An optical transceiver defined by an MSA agreement can include advanced integrated functions for carrier-grade operation which preserves the existing MSA specifications allowing the optical transceiver to operate with any compliant MSA host device with advanced features and functionality. An XFP module can include integrated circuitry configured to provide forward error correction encoding and decoding; a transmitter communicatively coupled to the integrated circuit; a receiver communicatively coupled to the integrated circuit; and a module housing in which the integrated circuitry, the transmitter, and the receiver are disposed, wherein the module housing is pluggable in a host device configured to operate the pluggable optical transceiver, and wherein the forward error correction encoding and decoding is performed transparently to the host device.
Abstract:
The present invention provides a method and a coder for jointly coding Pre-coding Matrix Index #1 (W1) and Rank Index (RI) for channel state information feedback of a double codebook precoding frame. In the present invention, it is determined whether Rank Index RI is more than 2; if the RI is no more than 2, a first half branch of a coding binary tree is used to represent joint coding of the RI and W1 when RI=1 and RI=2; if the RI is more than 2, a second half branch of the coding binary tree is used to represent remaining separate codings and/or joint codings when the RI is more than 2; and processing results of the above coding steps are output. The present invention may be applied to an equal-length coding or an unequal-length coding. The present invention has advantages such as easy implementation, lower signaling overhead etc., and may be suitable for an LTE-A/4G cellular communication system and a future 5G cellular communication system.
Abstract:
The present invention discloses an information feedback method. The method comprises steps of a serving cell and/or a user equipment determining a cooperating cell set participating multi-antenna-multi-cell cooperation, the cooperating cell set including the serving cell and non-serving cells, the user equipment and/or the serving cell selecting transmit-ports of the serving cell and non-serving cells according to the determined cooperating cell set, the user equipment obtaining channel state information of the selected transmit-ports, and the user equipment feeding back identification information and the channel state information of the selected transmit-ports. The present invention provides also a serving cell, a cooperative cell and a user equipment for feeding back the identification information and channel state information of the selected transmit-ports. The present invention has advantages of simple implementation and less signaling overhead.
Abstract:
A subband determining method, a base station, user equipment, and a communications system are provided. The base station of the present invention finds the subband size on the basis of a system bandwidth and divides the system bandwidth into subbands. The base station further selects some subbands to form a subband set and assign the subband set to user equipment and notifies the user equipment of information about the subband set. The user equipment in turn finds its corresponding subband size and the number of subbands for use in feedback on the basis of the size of the assigned subband set. The user equipment further divides the subband set into its corresponding subbands on the basis of a result found and feeds back information about a predetermined number of subbands to the base station. The base station carries out optimization of its transmitter on the basis of the information.
Abstract:
The present invention provides a relay collaborative cellular mobile communication system and a communication method of the system. In the method, all relay stations or a base station and relay stations in a cell (i) measure all uplink signals such as uplink reference signals and random-access signals from user devices for obtaining reception qualities of uplink signals of the user devices at the sites and (ii) feed back measurement results to the base station. The base station determines a transmission route of a user device based on the measurement results. A site in a transmission route processes schedule control information and then transmits the information to the user device for performing, based on lumped scheduling of the base station, a downlink reception, an uplink transmission, an uplink retransmission, or a downlink retransmission. In an uplink HARQ mechanism, the site in the transmission route receives an uplink signal from the user device, feeds back an ACK to the user device, and transmits a processed uplink signal to the base station, or feeds back an NACK or an ACK to the base station. The base station judges, based on results of decoding and detecting transmitted data or feedback results from the sites in the transmission route, whether or not the current uplink transmission is successful or whether to adjust the uplink retransmission.
Abstract:
The present invention provides a precoding method for use in a wireless communications system. According to the precoding method of the present invention, a serving base station and cooperative communication base stations employ an identical precoding matrix so as to weight transmission signals and then transmit them. The weighting stands for multiplication of results of overall precoding or each layer precoding process by weight values at the serving base station and the cooperative communication base stations. A user device corresponding to the serving base station and the cooperative communication base stations receives a signal which is obtained by an operation in which the serving base station and the cooperative communication base stations perform an identical precoding process and additively combine results of overall precoding or each layer precoding process with one another. The user device feeds back information which includes (i) precoding matrix information for the serving base station and the cooperative communication base stations, (ii) weight vector information for either overall precoding or layer precoding, and (iii) a quantized value of channel quality. This feedback information is thus advantageous in that its signaling information amount is small.
Abstract:
A method for cooperative communications among base stations according to the present invention includes: a first step in which a serving base station determines whether a user device is in an mode of cooperative communications among the base stations; a second step in which the serving base station uses a downlink control signal to make configuration for the user device; a third step in which the user device obtains (i) system information regarding the serving base station and a cooperative communication base station indicated by configuration information received and (ii) channel state information; a fourth step in which the user device feeds back channel state information regarding downlink channels between the user device and the serving base station and between the user device and the cooperative communication base station; a fifth step in which the serving base station carries out resource scheduling and backhaul communications in accordance with the channel state information thus fed back; and a sixth step in which the user device receives an allocation instruction to allocate downlink resources.