Abstract:
A drift tube construction includes a thin wall aluminum tube with a thin wire at its center attached to a terminal. The tube is plugged at both ends. The terminal is embedded at the center of the plug with material insulating it from Drift tube main body. The Drift tube assembly is sealed and filled with a gas mixture. A voltage is applied to the thin wire via the terminal. Current drift tubes employ plastic material to insulate the terminal from Drift tube main body and O-rings to provide a near hermetic seal.
Abstract:
A detector unit for two-dimensional detection of incoming radiation from an X-ray source, primarily for use in X-ray radiography. The unit includes a solid material structure (2) having a plurality of passages (6) extending therein and comprising surface portions (7) comprising a conversion medium. The surface portions of the passages are inclined, so that the incoming radiation impinges at an acute angle onto the surface portions. In this way, the efficiency of the detector and the positional resolution are improved.
Abstract:
A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization.An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.
Abstract:
Disclosed include a drift tube for particle detection, a detection system including one or more of the drift tubes, a method of producing a drift tube, and a detection method using a drift tube and/or a detection systems. The drift tube may include: a housing tube extending along a longitudinal axis and structured to include a first end, a second end, and an internal surface configured as a cathode, a first end cap and a second end cap hermetically engaged to and electrically isolated from the first end and the second end of the housing tube, respectively; a detection gas enclosed inside the housing tube and configured for undergo ionization by charged particles; and an anode wire traversing the housing tube along the longitudinal axis and being configured to detect the ionization that indicates a track of the charged particles inside the drift tube.
Abstract:
A detector for detection of ionizing radiation comprises a cathode; an anode; an ionizable gas arranged between these electrodes; a radiation entrance arranged such that ionizing radiation can enter and ionize the ionizable gas; and a readout arrangement. A voltage across the electrodes causes electrons created during ionization of the gas to drift towards the anode, where the readout arrangement detects them. To reduce the risk of occurrence of sparks, and/or to reduce the energy in occurring sparks, one of the cathode and anode has at least the surface layer facing the other electrode made of a material having a resistivity of at least 5×10−8 &OHgr;m.
Abstract:
A detector for detection of ionizing radiation comprises a cathode; an anode; an ionizable gas arranged between these electrodes; a radiation entrance arranged such that ionizing radiation can enter and ionize the ionizable gas; and a readout arrangement. A voltage across the electrodes causes electrons created during ionization of the gas to drift towards the anode, where the readout arrangement detects them. To reduce the risk of occurrence of sparks, and/or to reduce the energy in occurring sparks, one of the cathode and anode has at least the surface layer facing the other electrode made of a material having a resistivity of at least 5null10null8 nullm.
Abstract:
A medical imaging device using X- or gamma ionizing radiation, provided with a source of radiation in a divergent beam diaphragmed by a slit and a module for detecting a beam transmitted by a body to be observed, illuminated by the beam. The detection module comprises a drift chamber and a multiwire chamber which are filled with a gas, these chambers comprising, in a direction orthogonal to the plane containing the slit and the illumination beam, a drift space for the electrons, an electron proportional multiplier grid for generating multiplied electrons and corresponding ions and a second cathode electrode making it possible to count the multiplied electrons by means of the corresponding ions for a plurality of directions of the sheet-form illumination beam.
Abstract:
A borehole muon detector for muon radiography or geotomography is provided, the borehole muon detector including a substantially cylindrical housing, which defines a bore, a pair of end caps, each end cap sealing an end of the cylindrical housing and a plurality of sealed drift tubes which are longitudinally disposed in the bore of the housing to form a bundle of drift tubes, wherein each sealed drift tube comprises: a centrally located anode wire disposed on a longitudinal axis; an inner surface which is coated with a cathode coating, the cathode coating divided into a first cathode pad and a second cathode pad by a Vernier pattern; and a timer in electrical communication with the anode wire for measuring a drift time. A system and a method are also provided.
Abstract:
A borehole muon detector for muon radiography or geotomography is provided, the borehole muon detector including a substantially cylindrical housing, which defines a bore, a pair of end caps, each end cap sealing an end of the cylindrical housing and a plurality of sealed drift tubes which are longitudinally disposed in the bore of the housing to form a bundle of drift tubes, wherein each sealed drift tube comprises: a centrally located anode wire disposed on a longitudinal axis; an inner surface which is coated with a cathode coating, the cathode coating divided into a first cathode pad and a second cathode pad by a Vernier pattern; and a timer in electrical communication with the anode wire for measuring a drift time. A system and a method are also provided.
Abstract:
A gas filled detector shell for the detection of high energy transmissions, including microwaves, lasers, electromagnetic signals, RF waves, radiation, and/or other transmissions emitted by a source including a weapon system. The shell may also be used as a safety device to warn and alert personnel working around high energy devices of electromagnetic leaks. In one embodiment, the shell is made of a substance that detects or senses energy transmission.