Abstract:
A product having at least one plasma lamp that includes plates that are approximately parallel, with at least one array of microcavities formed in a surface of at least one plate. When desirable, the plates are separated a fixed distance by spacers with at least one spacer being placed near the plate's edge to form a hermetic seal therewith. A gas makes contact with the microcavity array. Electrodes capable of delivering a time-varying voltage are located such that the application of the time-varying voltage interacts with the gas to form a glow discharge plasma in the microcavities and the fixed volume between the plates. The glow discharge plasma efficiently and uniformly emits radiation that is predominantly in the UV/VUV spectral range with at least a portion of the radiation being emitted from the plasma lamp.
Abstract:
A gas discharge device includes a thin glass tube filled with a discharge gas; a pair of first and second long electrodes extending toward either side along a longitudinal direction with a discharge gap interposed therebetween are provided outside of a back side flat surface of a thin glass tube; and a ultraviolet phosphor layer formed on an inner surface at the back side flat surface, the thin glass tube filled with a discharge gas having a front side flat surface and the back side flat surface facing each other on a transverse section, wherein, starting with trigger discharge that is initially generated in the discharge gap as a result of a voltage increase when a voltage with a sine waveform or an inclined waveform is applied between both electrodes, the discharge gradually extends so as to move in the longitudinal direction of the electrodes. Ultraviolet light having high luminous efficiency and emission intensity is obtained from a front side surface of the thin glass tube by driving the device with a sine-wave AC voltage.
Abstract:
The object of this invention is to provide a gas discharge device which has a simple configuration, inexpensive, and has excellent luminous efficiency, for an ultraviolet or visible light source.The invention provides a gas discharge device in which first and second long electrodes extending toward either side along a longitudinal direction with a discharge gap interposed therebetween are provided outside of a back side flat surface of a thin glass tube, the thin glass tube filled with a discharge gas having a front side flat surface and the back side flat surface facing each other on a transverse section, wherein, starting with trigger discharge that is initially generated in the discharge gap as a result of a voltage increase when a voltage with a sine waveform or an inclined waveform is applied between both electrodes, the discharge gradually extends so as to move in the longitudinal direction of the electrodes. Ultraviolet light having high luminous efficiency and emission intensity is obtained from the flat surface at the front surface side by forming an ultraviolet phosphor layer in the thin glass tube and driving the device with a sine-wave voltage.
Abstract:
A display device includes elongated display tubes each of which has a discharge gas filled and a phosphor layer formed in the tube; a flexible sheet; a plurality of electrodes; and an adhesive layer. Each of the tubes is flat elliptical in cross section and has a plane section. The flexible sheet abuts against the plane sections of the tubes to support the tubes. The plurality of electrodes are arranged on the tubes abutting surface of the flexible sheet, for applying a voltage to the tubes to generate discharges within the tubes. The adhesive layer is disposed on the tubes abutting surface of the flexible sheet to bond the flexible sheet to the plane sections of the tubes so that the electrodes of the flexible sheet face the plane sections when the flexible sheet abuts against the plane sections of the tubes.
Abstract:
Electrode configurations for an AC or DC gas discharge device having a multiplicity of pixels or sub-pixels defined by a hollow gas-filled plasma-shell. One or more addressing electrodes are in electrical contact with each plasma-shell. The electrical contact may include a conductive pad in electrical contact with the electrode and/or the plasma-shell.
Abstract:
A phosphor layer is formed efficiently in a gas discharge tube by drawing a mother material to fabricate a supporting member which is insertable in a small glass tube used for a gas discharge tube, forming a phosphor layer on the supporting member, and inserting and placing the supporting member in the small glass tube.
Abstract:
A method of forming a phosphor layer of a gas discharge tube provided with the phosphor layer on an internal surface of an elongated tubular vessel forming a discharge space. The method includes the steps of introducing a slurry of phosphor powder and a binding resin dispersed in a medium into the tubular vessel, holding the tubular vessel sideways to deposit the phosphor powder and the binding resin in the tubular vessel, and removing the medium from the tubular vessel, thereby forming a phosphor layer on one side of the internal surface of the tubular vessel.
Abstract:
A discharge lamp having a large light output and a stable discharge. On an external surface of a cylindrical glass bulb enclosing a rare gas such as xenon, a pair of beltlike electrodes are mounted so as to face each other. A light output part is provided between the electrodes, and the electrodes are situated close to each other on the opposite side to the light output part. An image display device is constituted by arranging a plurality of the discharge lamps.
Abstract:
A plasma lamp includes plates that are approximately parallel, with at least one array of microcavities formed in a surface of at least one plate. When desirable, the plates are separated a fixed distance by spacers with at least one spacer being placed near the plate's edge to form a hermetic seal therewith. A gas makes contact with the microcavity array. Electrodes capable of delivering a time-varying voltage are located on the surface of each plate. At least one electrode is located on an exterior surface of at least one interior plate. Optionally, protective windows may be placed over the electrodes. The application of the time-varying voltage interacts with the gas to form a glow discharge plasma in the microcavities and the fixed volume between the plates (when present). The glow discharge plasma efficiently and uniformly emits UV/VUV radiation over the entire surface of the lamp.
Abstract:
A gas reactor device includes a plurality of microcavities or microchannels defined at least partially within a thick metal oxide layer consisting essentially of defect free oxide. Electrodes are arranged with respect to the microcavities or microchannels to stimulate plasma generation therein upon application of suitable voltage. One or more or all of the electrodes are encapsulated within the thick metal oxide layer. A gas inlet is configured to receive feedstock gas into the plurality of microcavities or microchannels. An outlet is configured to outlet reactor product from the plurality of microcavities or microchannels. In an example preferred device, the feedstock gas is air or O2 and is converted by the plasma into ozone (O3). In another preferred device, the feedstock gas is an unwanted gas to be decomposed into a desired form. Gas reactor devices of the invention can, for example, decompose gases such as CO2, CH4, or NOx.