Abstract:
A header box, a furnace and a blocked condensation protection system are disclosed herein. In one embodiment, the header box includes: (1) a first channel having a first channel supply port positioned to be in fluid communication with an inlet of a combustion air blower and a first pressure port couplable to a first input of a pressure sensing device, the combustion air blower and the pressure sensing device associated with the cold end header box and (2) a second channel having a second channel supply port positioned to be in fluid communication with the inlet of the combustion air blower, a second pressure port couplable to a second input of the pressure sensing device and a pressure reference inlet, the second channel in fluid communication with the first channel and configured to have about a same pressure as the first channel when the pressure reference inlet is blocked.
Abstract:
A header box, a furnace and a blocked condensation protection system are disclosed herein. In one embodiment, the header box includes: (1) a first channel having a first channel supply port positioned to be in fluid communication with an inlet of a combustion air blower and a first pressure port couplable to a first input of a pressure sensing device, the combustion air blower and the pressure sensing device associated with the cold end header box and (2) a second channel having a second channel supply port positioned to be in fluid communication with the inlet of the combustion air blower, a second pressure port couplable to a second input of the pressure sensing device and a pressure reference inlet, the second channel in fluid communication with the first channel and configured to have about a same pressure as the first channel when the pressure reference inlet is blocked.
Abstract:
A CEHB, a furnace and a method of constructing a furnace are disclosed. In one embodiment, the CEHB includes: (1) a fixed orifice configured to regulate air flow through a heat exchanger of the furnace, wherein a combustion air inducer induces the air flow and (2) a negative pressure channel including a negative channel supply port that communicates with an inlet of the combustion air inducer, a negative pressure port configured to connect to a negative input port of a pressure switch and bleed ports configured to reduce a pressure received through the negative channel supply port at the inlet to a targeted range at the negative pressure port, the pressure switch configured to monitor a combustion pressure through the heat exchanger.
Abstract:
To reduce the barrier sealant amount, the area of a throat (88), communicating an inlet compartment (78) to an outlet opening (64), is made small. Should sealant not be in the throat, wastewater in the throat would be correspondingly small. A snorkel (110) in a discharge section drain tube (98) extends downwards to above the level of the horizontal drain, and allows any air from the external drain to pass to the outlet compartment generally below the ceiling (90) so that, should wastewater cover the opening of the drain tube, such air is permitted to enter into the cartridge and to prevent any syphoning. A three rib channel guide mechanism (100) within the tube guides wastewater flow towards the drain tube center, and away from the drain tube walls to avoid deposit of any sediment contained in the wastewater.
Abstract:
An access system for a pressure controlled environment is disclosed and described. The system can include a pressurized region having a first fluid. The pressurized region can be defined, at least partially, by a barrier separating the pressurized region from a lower pressure region. The system can also include a trap fluidly coupling the pressurized region and the lower pressure region through at least a portion of the barrier. The trap can have a second fluid forming a seal to prevent the first fluid from escaping the pressurized region. Additionally, the system can include at least one cable extending through the trap and the barrier into the pressurized region.
Abstract:
In a urine cartridge or wastewater trap, equalized pressures and increased flow rate between its inlet and outlet compartments increases the life of the cartridge. The pressure equalizing is effected by placement of a separator between the two compartments to provide them with substantially equal volumes. The increased flow rate is created by a uniquely configured baffle positioned adjacent a pan at the bottom of the cartridge. The baffle configuration is shaped to provide a constriction that increases the flow velocity of the urine so that the fluid flow effects a channel along the bottom pan and through any solids deposited on the bottom pan. A diverter may be placed above the centrally located entry to the inlet compartment to create a circuitous path for preventing a disturbing impingement of the urine onto the sealant contained in the inlet compartment. To accommodate the centrally placed entry and its placement vis-a-vis the inlet compartment, the separator is bowed at its location adjacent the entry and towards the outlet compartment. To fit the configuration of the baffle, the separator is curved generally in a likewise manner.
Abstract:
A furnace heat exchanger assembly includes first and second heat exchanger halves. The first heat exchanger half includes a first half of an exhaust channel and an inner joint flange half at an end thereof. The second heat exchanger half includes a second half of the exhaust channel and an outer joint flange half at an end thereof having first and second capturing tabs. The first and second heat exchanger halves are coupled together such that the first and second capturing tabs substantially overlap the inner joint flange half to form a joint flange.
Abstract:
A nitrogen oxide reduction baffle for a heat exchanger of a furnace and a gas furnace incorporating at least one such baffle. In one embodiment, the baffle includes: (1) a body having a predetermined length, cross-sectional configuration and longitudinal slot, the longitudinal slot having a predetermined width and position and (2) a locating structure coupled to the body and configured to place the body in a predetermined longitudinal location within a heat exchanger and orient the slot relative to the heat exchanger, the body laterally constrained within the heat exchanger when the body is located at the predetermined longitudinal location.
Abstract:
Provided, in aspect, is a suspension bracket for use with an HVAC component. The suspension bracket, in one embodiment, may include a base portion, a first tab portion coupled to the base portion, wherein the first tab portion is positioned substantially perpendicular to the base portion, and a second tab portion coupled to the base portion. The second tab portion, in this embodiment, may include a first region and a second region, wherein the first region is positioned substantially perpendicular to the base portion, and further wherein the second region is positioned substantially perpendicular to the base portion and the first region.
Abstract:
The present invention provides a conduit trap, which can also operate as condensation recovery device when installed in a refrigeration system drainage line. The conduit trap is generally a hollow body defining a fluid path that includes an upper conduit 20, having a waste outlet 30 and optionally a condensation collection outlet 32. A lower conduit 22 extends downwardly from the upper conduit and has a narrowing that creates an inner sealing region for receiving a sealing means, such as float 50. Condensation can be directed from the refrigeration system through the conduit trap for recovery or for disposal without exposing the refrigeration drainage line and occupied space in which the refrigeration unit is located to sewer gasses even in dry weather when a gravity based, fluid-filled trap would fail.