Abstract:
A binding for a snowboard or the like and a boot sole for cooperating with the binding, the sole having side engagement members, and the binding having a stationary boot-retaining member and a movable boot-retaining member having a latched condition for engaging the side engagement members, and a release condition for not engaging the side engagement members. The movable boot-retaining member can be automatically or voluntarily placed in the latched condition.
Abstract:
An apparatus comprising a snowboard boot and a binding interface including an interface feature that is adapted to releasably engage with a snowboard binding. The binding interface is movably mounted to the boot so that the boot can flex in a side-to-side direction through an angle relative to the binding interface to provide side-to-side flexibility. In one embodiment, the binding interface is mounted to the boot at a pair of laterally spaced attachment points with a pair of strapless fasteners. In another embodiment, the binding interface is mounted to at least one attachment point and a portion of the boot is flexible between the attachment point and a side. In other embodiments, at least a portion of the interface feature does not protrude below the bottom surface of the boot, and the interface feature does not protrude beyond the sides of the boot. In yet other embodiments, the apparatus includes an adjustment member to adjustably restrict the side-to-side flexibility between the boot and the binding interface, and a dampening element that dampens the side-to-side flexibility. The boot may include an arcuate lower surface that extends across the boot with the binding interface mounted to the boot below the arcuate lower surface. A fluid-filled bladder may be provided to control the side-to-side flexibility of the boot. The binding interface may be slidably mounted to the boot using arcuate surfaces, such as convex and concave surfaces, that allow the boot to slide across the binding interface.
Abstract:
One embodiment is directed to a system for mounting a rider to a snowboard, and an interface for use in such a system. The system comprises a snowboard boot, a snowboard binding and an interface having at least one mating feature adapted to be releasably engaged by the snowboard binding. The interface further includes at least one strap adapted to mount the interface to the snowboard boot. The outer sole of the snowboard boot includes a recess rearward of the arch area that is adapted to receive the interface so that the interface does not protrude below the outer sole when the interface is mounted to the snowboard boot. In another embodiment, the interface includes a base that is adapted to pass under the sole of the snowboard boot, the base having a non-planar contoured upper surface that is adapted to fit within a recess in a sole of the snowboard boot. In another embodiment, the mating feature of the interface includes at least one engagement pin that extends outwardly from medial and lateral sides of the interface and is circular in cross-section. The various features of the system can be combined or used separately.
Abstract:
Step-in snowboard binding designed to hold a boot by its sides. The binding includes at least one jaw (2) secured to a driving arm (9) intended to be driven by the boot. The jaw has a cam-shaped part (9) collaborating with a locking element (12) which can move in a guide (13) in such a way that the jaw is locked for various positions of the jaw. The jaw (2) is equipped with a return spring which tends to keep it in the open position, and the jaw and the locking element cooperate to keep the locking element away from its locking position when the jaw is raised. In this way, the jaw cannot be closed inadvertently and the locking element does not hamper the closure movement. The binding is equipped with an indicator (76) which indicates whether the jaw is in the locked position.
Abstract:
A shoe/binding assembly for a gliding board allowing the user's foot to be secured temporarily to said board at a plurality of contact points which, on the binding, consist of attachment means intended to interact with complementary attachment means which are located on the shoe at the front and rear of the sole, wherein at least one of the contact points has a plurality of positions for locking of the attachment means of the shoe by those of the binding, intended to prohibit any movement of the shoe upward and to make it possible to change automatically from one locking position to the next in the downward direction of the shoe, under the effect of the user's weight.
Abstract:
A boot suitable for use in association with various sports related gliding devices having a stirrup embedded in the sole of the boot containing a pair of opposed arms for removably supporting a pin therebetween.
Abstract:
A snowboard binding mechanism for securing a snowboard boot to a snowboard includes at least one moveable engagement member having an open position and at least one closed position. When in the closed position, the engagement member is biased toward the open position. As a result, when a snowboard boot is not disposed in the binding mechanism, the binding mechanism automatically moves to the open position. The engagement member may also function to compensate for snow, ice or debris accumulated beneath the boot. A single handle may be operatively connected to the engagement members to facilitate ease of removal of the snowboard boot from the binding by simply requiring actuation of the single handle to unlock the binding. A separate foot pedal may be operably coupled to the engagement member and is also employed to unlock the binding. The binding mechanism may also include a cocking feature that unlocks the binding mechanism without also causing the engagement members to move to open positions. A non-metallic heel hoop may be adjustably mounted to the base of a binding for movement in a forward and rearward direction relative to the base. The heel hoop is mounted at a location on the base such that no portion of the heel hoop extends forward of the engagement member. The heel hoop may also include a base portion that is adapted to at least partially underlie the sole of the boot when the boot is held within the binding.
Abstract:
One embodiment is directed to a snowboard boot for use in a system for mounting a rider to a snowboard, the system comprising a snowboard binding to be mounted to the snowboard and an interface having at least one mating feature adapted to be releasably engaged by the snowboard binding, the interface including at least one strap adapted to releasably mount the interface to the snowboard boot. The snowboard boot comprises a boot upper and a sole including a recess, disposed rearwardly of the arch area, that is adapted to receive the interface so that the interface does not protrude below the sole when the interface is mounted to the snowboard boot. In another embodiment, the interface includes a base adapted to pass under the sole of the boot and having a non-planar contoured upper surface, and the boot recess periphery includes at least one bottom-facing non-planar contoured surface that is adapted to mate with the non-planar contoured upper surface of the interface.
Abstract:
An active high back system is provided for automatically adjusting the snowboard boot between a walking position and a riding position. The snowboard boot is provided with an active highback support that is adjustably mounted to a snowboard boot. During walking, the active highback support does not constrain the flexibility of the snowboard boot making it possible for the snowboard rider to walk easily. When the rider steps into the bindings of the snowboard, the active highback support engages a part of the snowboard or binding that causes the snowboard boot to lean forward. In other words, the highback support is positioned to engage the back leg portion of a snowboard boot to provide a rigid surface that holds the boot in a forward leaning position. The active highback support is provided with an adjustment mechanism that allows the rider to adjust the amount of forward lean when the snowboard boot is engaged within the bindings of the snow board.
Abstract:
A three point step-in snowboard binding includes medial and lateral binding pin engagers that interact with corresponding pins in a boot. The binding latches the boot after the snowboarder steps into the binding, and remains latched until a release control is actuated.