Abstract:
A process for the synthesis of urea, which comprises subjecting a urea synthesis solution from a urea synthesis column to stripping with a raw material carbon dioxide under a pressure approximately equal to the urea synthesis pressure to separate a major portion of unreacted ammonia and carbon dioxide as a mixed gas from the urea synthesis solution, condensing the mixed gas by indirect heat exchange with the urea synthesis solution from which the mixed gas was separated and that is preferably decompressed to a pressure lower than the urea synthesis pressure, and heating the urea synthesis solution by heat of condensation generated at the time of the condensation of the mixed gas.
Abstract:
The invention relates to a process for the preparation of urea from ammonia and carbon dioxide, the preparation being effected in whole or in part in a vertical combi-reactor. The gas stream leaving the stripper is fed to the condenser section of a vertical combi-reactor in which this gas stream is wholly or partially condensed in the carbamate stream which is transferred from the scrubber section to the condenser section via a downcomer. Ammonia and carbon dioxide are partially converted into urea in this condenser section of the combi-reactor. The urea conversion is completed in the reaction section of the combi-reactor.
Abstract:
In the present process for the preparation of urea, an off-gas stream released during the synthesis of melamine in a high-pressure melamine process which consists predominantly of ammonia and carbon dioxide, is introduced into at least one high-pressure section of a urea stripping plant and is used in the synthesis of urea. The off-gas stream can be used directly without any further treatment.
Abstract:
The invention relates to an installation for the preparation of urea from ammonia and carbon dioxide, the installation comprising two reactor sections in a vertically placed combined reactor and a high-pressure condenser section. The installation may comprise a vertically placed combined reactor, with the two reactor sections being separated by a high-pressure condenser section. In another embodiment the installation comprises a vertically placed combined reactor that comprises two reactor sections and a high-pressure condenser section placed outside the reactor. The invention also relates to a process for the preparation of urea in this installation. This involves feeding the gas stream leaving the stripper wholly or partly to the high-pressure condenser section of the installation. Preferably, a portion of the gas stream leaving the scrubber is fed to the second reactor section in the vertically placed combined reactor via an ammonia-driven ejector.
Abstract:
Process for the revamping of urea production plants for the synthesis of ammonia (NH3) and carbon dioxide, with a stripping section with NH3, in which the process carries out with differentiated yields, a majority reaction a) between highly pure reagents and a reaction b) between less pure substantially recycled reagents, according to European Patent No. 91116297.2/0479103. According the invention, the urea solution is now fed upstream the stripping section and a reactor with heat removal is utilized. Advantageous, the production capacity of the existing reactor is reduced, with respect to the projected one, in a quantity of 35% to 5%, preferably from 20% to 10%, in favor of the capacity of the “once-through” reactor.
Abstract:
The invention relates to a process for the preparation of urea from ammonia and carbon dioxide in which the low-pressure carbamate stream formed in the further upgrading of the urea synthesis solution is stripped in a CO2-carbamate stripper in countercurrent contact with CO2, which results in the formation of a gas mixture consisting substantially of ammonia and carbon dioxide. This gas mixture is preferably subsequently condensed in a high-pressure carbamate condenser and then returned to the synthesis zone.
Abstract:
The invention relates to a method for producing urea. According to said method, the off-gases which originate from a melamine plant and essentially consist of NH3 and CO2 are introduced into the high-pressure zone of the urea plant by means of ejectors.
Abstract:
A urea synthesis process with improved heat economy, wherein a urea synthesis solution obtained by removing most of the unreacted ammonium carbamate by stripping with carbon dioxide at a pressure approximately equal to a urea synthesis pressure is subjected to a high and low pressure decomposition. The gas mixture obtained from the high-pressure decomposition is condensed in at least two steps. Gases obtained from the stripping of the urea synthesis solution, after an initial condensation may be alternatively routed into the high-pressure decomposition column thus facilitating the decomposition of unreacted ammonium carbamate; may be mixed with off-gases from the high-pressure decomposition column and routed to an indirect heat-exchanger for concentrating the aqueous urea solution and facilitating the condensation of the off-gases from the high pressure decomposition column; or may be routed to a condenser for the gas mixture obtained from the high-pressure decomposition after it has underwent indirect heat-exchange with the aqueous urea solution, thus facilitate the further condensation of these gases.
Abstract:
Process for the preparation of urea from ammonia and carbon dioxide in which the composition of the various process streams is measured via an ultrasonic measuring principle and in which the results of these measurements are used for process control. The process is particularly suitable for continuous measurements in a urea process.
Abstract:
A process for urea production in a synthesis loop based on CO2 stripping is distinguished by the fact that at least part of a flow recycle carbamate is sent to a treatment of carbamate decomposition and removal of free ammonia to obtain a vapour flow containing CO2 and NH3 with minimum content of water, and a weak water carbamate solution sent back to a urea recovery unit URS and being at least part of above vapour flow containing CO2 and NH3 with minimum content of water directly fed to the bottom zone of a reaction space.