摘要:
A method of identifying nucleotide sequences coding for signal peptides in lactic acid bacteria, using a DNA molecule comprising a transposon including a promoterless reporter gene from which DNA molecule a region between the LR and the reporter gene is deleted and the DNA molecule comprises a DNA sequence coding for a secretion reporter molecule. By deleting the region between the LR and the reporter gene, stop codons in-frame with the secretion reporter molecule is removed which upon transposition permits translational fusions from upstream the LR.
摘要:
An isolated polynucleotide encoding a novel potassium channel polypeptide, KCNQ5, that is expressed primarily in brain and skeletal muscle is described. The new polypeptide has been cloned and isolated from a human brain cDNA library and is a member the KCNQ family of potassium channels. The provided human KCNQ5 nucleic acid sequence and encoded polypeptide can be employed for diagnostic, screening and therapeutic uses. Moreover, the hKCNQ5 polypeptide can be used to assay for KCNQ5 potassium channel modulators, which can be utilized in the treatment of neurological, neurophysiological, neuropsychological and neuroaffective diseases, conditions and disorders, including, but not limited to, acute and chronic pain, migraine, acute stroke, dementia, vascular dementia, trauma, epilepsy, amyelotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson's Disease, learning and cognitive disorders, and neurophysiological disorders including anxiety disorders, depression, bipolar disorders, sleep disorders, addiction, and eating disorders.
摘要:
In accordance with the present invention, it has been discovered that nuclear receptor proteins isolated from the silk moth bombyx mori (bR) are useful for the regulation of transgene expression. bR is generally thought to be a strong transcriptional regulator within cells of the silk moth. In accordance with the present invention, it has been discovered that bR is also functional in mammalian cells. It has further been discovered that the addition of activation domains to the bR open-reading frame enhances the activity of the ligand modulated regulator to afford high-level transcriptional induction. Further modifications to the bR ligand binding domain result in receptors with unique transactivational characteristics.