Abstract:
A system and method (44) for focusing an image oriented in an arbitrary direction when the collected synthetic aperture radar (SAR) data is processed using range migration algorithm (RMA). In accordance with the teachings of the present invention, first (60) the data is skewed so that the direction of smearing in the image is aligned with one of the spatial frequency axes of the image. In the illustrative embodiment, the smearing is aligned in the vertical direction. This is done through a phase adjustment that was derived from the requirements for proper shift in the spatial frequency domain. Next (62), the signal support areas from all targets are aligned by proper phase adjustment in the spatial (or image) domain. Finally (64), the common phase error can be corrected using autofocus algorithms.
Abstract:
A method and bistatic synthetic aperture radar (SAR) imaging system generate an image of a target area without knowledge of the position or velocity of the illuminator. The system includes an illuminator to illuminate a target area with a null-monopulse radiation pattern interleaved with a sum radiation pattern. The illuminator adjusts the phase terms of the sum radiation pattern to maintain a static electromagnetic field pattern at the target area. A receiver receives the radiation patterns reflected from the target area and generates phase compensation terms by correlating a measured electromagnetic vector field with the known static electromagnetic vector field. The phase compensation terms are used to generate an image of the target area.
Abstract:
By means of a tomograhic radar technique consisting of a coherent combination of large numbers of synthetic aperture radar images acquired by several air or space SAR systems having different look angles, a real three-dimensional imaging of volume scatterers is achieved. This allows the separation of the backscattered signal of volume scatterers in the height direction which can be further evaluated independently. The invention can be put to use in the three-dimensional analysis of vegetation layers and ground strata, but also for imaging and mapping of buildings, urban areas and mountainous terrain.
Abstract:
An RFID system using encoded digital information utilizing pulsed linear frequency modulation (LFM). The LFM waveform is sent from an24 aircraft or satellite and is received by a transponder. The LFM waveform is demodulated using both, an AM and an FM receiver. The demodulated data is compared to preprogrammed criteria tables, and after validation is decoded and utilized. Algorithms in the transponder are used to determine the frequency deviation and for calculating the direction of the slope of the LFM input signal. The valid RF signal is stored in a delay element, encoded with the transponder data using phase modulation (PM), and frequency modulation (FM). The tag transmission is synchronized to the input LFM waveform. The transmit/receive chopping signal prevents unwanted oscillations and is capable of randomization.
Abstract:
Methods and apparatus compress data, comprising an In-phase (I) component and a Quadrature (Q) component. The compressed data may be saved into a memory or may be transmitted to a remote location for subsequent processing or storage. Statistical characteristics of the data are utilized to convert the data into a form that requires a reduced number of bits in accordance with the statistical characteristics. The data may be further compressed by transforming the data, as with a discrete cosine transform, and by modifying the transformed data in accordance with a quantization conversion table that is selected using a data type associated with the data. Additionally, a degree of redundancy may be removed from the processed data with an encoder. Subsequent processing of the compressed data may decompress the compressed data in order to approximate the original data by reversing the process for compressing the data with corresponding inverse operations.
Abstract:
A high-definition radar imaging system and method receives image data and adaptively processes the image the data to provide a high resolution image. The imaging technique employs adaptive processing using a constrained minimum variance method to iteratively compute the high-definition image. The high-definition image I is expressed in range and cross-range as I(r,c)nullminnullHRnull, where null is a weighting vector and R is a covariance matrix of the image data. A solution for I(r,c) is approximated by i) forming Ynullnullx1 . . . xKnullT/{square root}{square root over (K)} where x1 . . . xk are beamspace looks formed from image domain looks and with y1, y2, and y3 denoting the Knull1 columns of Y; ii) computing r21nully2Ty1 and r31nully3Ty1, and bnullr21y2nullr31y3; computing null as 1 null = min null ( r 21 2 + r 31 2 b T null b , null - 1 r 21 2 + r 31 2 ) ; and iii) computing I(r,c) as I(r,c)nullnully1nullnullbnull2.
Abstract:
A ROSAR wire detection method is based upon ROSAR focusing of entire segments of wire. By generating a wire reference signal comprised of a sum of coherent reference signals, the basis for reliable wire detectability is provided.
Abstract:
Methods for mitigating sidelobes and aliases, providing levels of suppression in excess of 20 dB. The methods may include 1) a version of the CLEAN algorithm developed in radio astronomy, modified to work on sub-aperture images; 2) weighting functions based on the phase and amplitude statistics of the sub-aperture image pixels to select points in the CLEAN algorithm; and 3) weighting functions based on the phase and amplitude statistics of the sub-aperture image pixels to mitigate sidelobes and aliases, in conjunction with CLEAN or separately. The methods may be used with all synthetic aperture techniques and are not limited to SAR.
Abstract:
The invention relates to a radar system for active obstacle warning and imaging of the surface of the earth, working in the pulse frequency or FM-CW range, which can be used in on-line operation in real time, comprising a plurality of antenna elements for sending and receiving radar signals, which are arranged on the fuselage of an aircraft, and which may be turned on and scanned sequentially, whereby a synthetic aperture can be generated by means of periodic sending and receiving of the antenna elements. According to the invention, the antenna elements are arranged along the curved surface of the aircraft contour, whereby a SAR processor is present, which analyzes the data obtained from the antenna elements and displays them as processed radar images on board the aircraft, in a virtual cockpit.
Abstract:
Described herein are frequency-domain back-projection processes for forming spotlight synthetic aperture radar (nullSARnull) images that are not corrupted by the effects of multiple-bounce ghosting artifacts. These processes give an approximately exact reconstruction of the multiple bounce reflectivity function (MBRF) null(x,y,null). Specifically, the evaluation off null(x,y,null) in the nullnull0 plane gives an approximately exact reconstruction of the true object scattering centers which is uncorrupted by multiple-bounce contributions to the phase history data G(null,null). In addition, the non-zero dependence of null(x,y,null) upon the MB coordinate null can be used to facilitate the identification of features-interest within the imaged region.