Abstract:
A polarizing rotation device including a rotation shaft, a driving element and a polarizing element is provided. The driving element is configured to drive the rotation shaft to rotate. The polarizing element is connected to the rotation shaft and is disposed on a transmission path of at least one beam, where the driving element is configured to drive the polarizing element to rotate sequentially while taking the rotation shaft as a rotation central axis, and when the polarizing element is rotated, the at least one beam penetrates through the polarizing element, and the at least one beam penetrating through the polarizing element has different polarization states at different time. Therefore, when a projection device is in a polarized stereoscopic mode, a color or brightness of a display image is uniform, and a user observes a 3D display image with good uniformity.
Abstract:
A projection-type display device includes: R, G, and B light sources that emit light beams with different colors; a projection unit that projects light beams based on image information among light beams emitted from the light sources onto a projection screen; a heat sink that radiates heat generated from the R light source, which has a maximum change in light emission intensity relative to a change in temperature, among the light sources; and a heat sink that radiates heat generated from the G and B light sources and that has a surface area smaller than that of the heat sink. In a use state, the R light source is disposed on a side apart from the other light sources in a direction opposite to a direction of gravitational force.
Abstract:
A projector can prevent a flicker from being caused by rotation of a rotating phosphor plate. The projector includes a solid-state light source that emits excitation light, a rotating phosphor plate that converts the excitation light into phosphor light, a liquid-crystal light modulating device that modulates the light from the rotating phosphor plate, a projection optical system that projects the modulated light onto a screen, and a control device that controls the solid-state light source and the rotating phosphor plate so as to satisfy any one of a conditional expression A=B, a conditional expression A=2B, and a conditional expression |A−B| is greater than or equal to 20 and |A−2B| is greater than or equal to 20, where A represents a pulse width modulation control frequency in hertz of the solid-state light source and B represents a rotation frequency in hertz of the rotating phosphor plate.
Abstract:
A projection display apparatus projects red, green and blue light emitted from three projection tubes. Each light component passes through a projection lens. A separate color temperature corrector is detachably coupled to each projection lens. The color temperature corrector may employ neutral density filters, color dividing means, or liquid-crystal shutters.
Abstract:
Conventional cameras and other optical instruments produce images upon one plane only. Objects at differing ranges from the lens of such cameras cannot appear upon that plane in-focus simultaneously, and the operator, hence the viewer, is obliged to choose one primary plane of interest in which the major subject lies; all other objects at other ranges will be out of focus.The invention described produces photographic images that are in-focus at all ranges.This is achieved by dividing the original scene into two or more images focussed upon different ranges, and eliminating from each image those parts that are out-of-focus. The remaining in-focus parts of each image are then reconstituted into a single image for presentation.The elimination of blurred parts may be done by comparison of one sub-image with another, or by the subjective intervention of an operator using a mathmatical support system.The images described may be applied to still or motion photography, film or electronic.
Abstract:
A photographic objective, in whose plane a set of filter strips associated with different colors is located, forms an image on a black and white film while the lens elements of a lenticular grating form images of the set of colored strips on the corresponding areas of the film. All strip images together form a strip grating on the film so that the image formed by the objective can be reproduced as a color picture by the diffraction orders of the strip grating.