Abstract:
An electron gun includes a cathode portion (1) which emits electrons, an anode portion (3) which accelerates the emission electrons, a bias portion (2) which is arranged between the cathode portion and anode portion and controls trajectories of the emission electrons, a shielding portion (12) which is arranged below the anode portion and shields some of the emission electrons, and a cooling portion (14) which cools the shielding portion.
Abstract:
Disclosed is an electron beam apparatus and method which can retain the state that minimizes the amount of water content contained at a gap between a high-voltage cable and a high-voltage introduction insulator to thereby prevent creation of high-voltage discharge and current leakage. The apparatus comprises a means for applying a high voltage to an acceleration electrode while eliminating electron release from an electron source and for detecting a change in an emission current corresponding to a change in an acceleration voltage at this time. In addition, the apparatus comprises a means for issuing a cautionary notice or warning when the change of this emission current exceeds a prespecified value. Further, the apparatus comprises a means for letting a dry gas flow in a gap portion between the electron gun's high-voltage cable and the high-voltage introduction insulator to thereby dehumidify said gap portion. With such an arrangement, it is possible to prevent high-voltage discharge due to an increase in water content of the gap portion and also instability of an electron beam due to a leakage current.