Abstract:
Even in a case where a disturbance is applied from an adjacently disposed power supply circuit or the like, in order to realize a reduction in ripple, a high-voltage power supply device is configured to include a drive circuit, a transformer that boosts an output voltage of the drive circuit, a boost circuit that further boosts a voltage boosted by the transformer, a shield that covers the transformer and the boost circuit, a filter circuit that filters, smoothes, and outputs a high voltage output from the boost circuit, and an impedance loop circuit configured by connection of a plurality of impedance elements into a loop shape. A grounding point of the boost circuit, a grounding point of the shield, and a grounding point of the filter circuit are configured to be grounded via the impedance loop circuit, and this is applied to a high-voltage power supply unit that applies a high voltage to an electron gun of a charged particle beam apparatus.
Abstract:
The system described herein relates to a high-voltage supply unit for providing an output voltage for a particle beam apparatus, wherein the particle beam apparatus is embodied as, for example, an electron beam apparatus and/or an ion beam apparatus. The system described herein is based on the fact that it was recognized that a bipolar voltage supply unit can be formed by means of a unipolar first current source and a unipolar second current source, said bipolar voltage supply unit enabling a load current in two directions. The high-voltage supply unit according to the system described herein can be operated in the 4-quadrant operation. In the 4-quadrant operation, a first voltage source for supplying the first current source and a second voltage source for supplying the second current source are embodied as different voltage sources.
Abstract:
A multicolumn charged particle beam exposure apparatus includes a plurality of column cells which generate charged particle beams, and the column cell includes a yoke which is made of a magnetic material and generates a magnetic field of a predetermined intensity distribution around an optical axis of the column, and a coil which is wound around the yoke. The coil includes a plurality of divided windings, which are driven by different power sources.
Abstract:
An ion implanter includes a high-voltage power supply, a control unit that generates a command signal controlling an output voltage of the high-voltage power supply, an electrode unit to which the output voltage is applied, and a measurement unit that measures an actual voltage applied to the electrode unit. The control unit includes a first generation section that generates a first command signal for allowing the high-voltage power supply to output a target voltage, a second generation section that generates a second command signal for complementing the first command signal so that the actual voltage measured by the measurement unit becomes or close to the target voltage, and a command section that brings to the high-voltage power supply a synthetics command signal which is produced by synthesizing the first command signal and the second command signal.
Abstract:
This disclosure describes systems, methods, and apparatus for operating a plasma processing chamber. In particular, a periodic voltage function combined with an ion current compensation can be provided as a bias to a substrate support as a modified periodic voltage function. This in turn effects a DC bias on the surface of the substrate that controls an ion energy of ions incident on a surface of the substrate. A peak-to-peak voltage of the periodic voltage function can control the ion energy, while the ion current compensation can control a width of an ion energy distribution function of the ions. Measuring the modified periodic voltage function can provide a means to calculate an ion current in the plasma and a sheath capacitance of the plasma sheath. The ion energy distribution function can be tailored and multiple ion energy peaks can be generated, both via control of the modified periodic voltage function.
Abstract:
An RF impedance matching network includes an RF input; an RF output configured to operably couple to a plasma chamber; a series electronically variable capacitor (“series EVC”), the series EVC electrically coupled in series between the RF input and the RF output; and a shunt electronically variable capacitor (“shunt EVC”), the shunt EVC electrically coupled in parallel between a ground and one of the RF input and the RF output; a control circuit to control the series variable capacitance and the shunt variable capacitance, wherein the control circuit is configured to determine the variable plasma impedance of the plasma chamber, determine a series capacitance value and a shunt capacitance value, and generate a control signal to alter at least one of the series variable capacitance and the shunt variable capacitance; wherein the alteration is caused by at least one of a plurality of switching circuits.
Abstract:
A hand-held device and a method for plasma treatment of workpieces. The hand-held device comprises a housing for receiving a plasma source supplied with a gas stream from a gas supply unit. Further, an electrode unit is arranged in the plasma source and connected via an electrical line with a voltage source so that a plasma stream can be produced. The plasma stream can be directed through a nozzle of the housing onto a workpiece. The hand-held device comprises a sensor system for the collection of operating parameters which includes at least one operator sensor device for collecting a position of an operator relative to the plasma source and at least one pressure sensor for the collection of a pressure in the gas supply unit. Means of the hand-held device is communicatively connected with the sensor system for detecting the collected operating parameter via control data lines.
Abstract:
Charged particle system are disclosed and include a first voltage source, a second voltage source electrically isolated from the first voltage source, a charged particle source electrically connected to the first voltage source, and an extractor electrically connected to the second voltage source. Methods relating to the charged particle systems are also disclosed.
Abstract:
A focused ion beam device is described. The focused ion beam device includes an ion beam column including an enclosure for housing a gas field ion source emitter with an emitter area for generating ions, an electrode for extracting ions from the gas field ion source emitter, one or more gas inlets adapted to introduce a first gas and a second gas to the emitter area, an objective lens for focusing the ion beam generated from the first gas or the second gas, a voltage supply for providing a voltage between the electrode and the gas field ion source emitter, and a controller for switching between a first voltage and a second voltage of the voltage supply for generating an ion beam of ions of the first gas or an ion beam of ions of the second gas.
Abstract:
In one aspect, the present invention provides a method of managing fluctuations in power supplied to a semiconductor processing apparatus that includes monitoring the power supplied to the apparatus to detect the occurrence of a power fluctuation event during a semiconductor processing session. Upon detection of a power fluctuation event, the semiconductor processing can be interrupted. After the end of the power fluctuation event, at least one operational parameter of the apparatus, e.g., vacuum level in an evacuated processing chamber, can be measured, and the semiconductor processing can be resumed when the measured operational parameter is within an acceptable range. The measured operational parameter can preferably include a parameter that recovers more slowly than others when adversely affected by a power fluctuation event.