摘要:
A betatron is disclosed comprising an electromagnet having the gap thereof defined by the shaped tips of its pair of pole cores contains therewithin a vacuum accelerating chamber. The gap contains therewithin at least one bias winding connected in series with the magnetizing winding of the electromagnet. Both windings are excited by one and the same current pulse generator and are coupled to its energy accumulator via the switching elements of the generator. The switching elements of the generator, which return the energy stored by the electromagnet to the accumulator, are coupled to the magnetizing winding.
摘要:
Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.
摘要:
Variable pulse frequency during an output session of a betatron device and adjustable energy from pulse to pulse are provided. A different bias magnetic field may be used for different cycles of an output session, thereby providing different pulse energies. In one example, the bias field can be switched from a positive value to zero, with energy stored in a storage device when the bias field is zero. The bias field can also be used to expand electrons from a stable orbit when the bias field is decreased. For variable pulse frequency, when a current in the swing coils decreases to zero, the swing coils can be disengaged from a storage device for an adjustable time before re-engaging for a next cycle, thereby adjusting the frequency. In addition, radiation dose output can be adjusted by varying a length of time for the injection of electrons into a betatron.