Abstract:
A robust solid-state electro-chromic film stack including one or more electro-chromic layers composed of at least one bi-layer having a first and second layer. At least one of the first and second layer in each bi-layer includes electro-chromic nanoparticles formed of an electro- chromic material, A method of forming the robust solid-state electro-chromic film stack using a layer-by-layer deposition process is also provided.
Abstract:
Disclosed herein are devices and methods for the design and manufacturing of electronic eyeglasses and associated components thereof. Electronic eyeglasses consist of electro-active lenses, receiving electrical signals that turn them on and off from an electronic control module. The electronic control module is embedded within a temple of the eyeglass frame, and is powered by a removable power source pack residing at a temple tip through a flexible cable. Various methods describe the interconnection schemes between the components of the electronic eyeglasses.
Abstract:
Disclosed herein are devices and methods for the design and manufacturing of electronic eyeglasses and associated components thereof. Electronic eyeglasses consist of electro-active lenses, receiving electrical signals that turn them on and off from an electronic control module. The electronic control module is embedded within a temple of the eyeglass frame, and is powered by a removable power source pack residing at a temple tip through a flexible cable. Various methods describe the interconnection schemes between the components of the electronic eyeglasses.
Abstract:
The present invention relates generally to electro-active optical systems, such as a pair of spectacles having one or more lenses that employ electro-active optical structures. In some embodiments, the invention relates to electro-active optical systems whose position can be adjusted relative to a wearer's face. In some embodiments, the invention relates to methods of performing such adjustments.
Abstract:
An eyewear system including an eyewear frame and an application module. The eyewear frame including a docking station, and an electronic connector including a first set of preconfigured application connection points. The application module adapted to be mounted to the docking station, and including an electronic device configured to perform a function, and a second set of preconfigured application connection points corresponding to at least some of the first set of preconfigured application connection points. The second set of preconfigured application connection points including at least two different sub-function connections used to support the function of the electronic device.
Abstract:
Eyewear including an optical functional member, control electronics, and a sealed electrical connective element connecting the electronics to the optical functional member. The connective element can directly connect the electronics to the optical functional member, or can connect through an intermediate contact, e.g., a plug-and-receptacle. The connective element can be routed from the electronics, around a rimlock of the eyewear to the optical functional member. The connective element can be a conductive compressible member, such as conductive rubber. In some embodiments, the connective element can be a multiconductor cable.
Abstract:
Eyewear including an optical functional member, control electronics, and a sealed electrical connective element connecting the electronics to the optical functional member. The connective element can directly connect the electronics to the optical functional member, or can connect through an intermediate contact, e.g., a plug-and-receptacle. The connective element can be routed from the electronics, around a rimlock of the eyewear to the optical functional member. The connective element can be a conductive compressible member, such as conductive rubber. In some embodiments, the connective element can be a multiconductor cable.
Abstract:
An electro-active optical cell is described including a layer of electro-active material, a front glass substrate member, and a back glass substrate member. The optical cell is capable of independently providing changeable optical power with the application of an electrical potential. The cell is also configured to be affixed to an external surface of a plastic substrate and to provide the changeable optical power, with at least one of the front substrate or the back substrate of the optical cell being an outermost optical layer. The layer of electro-active material may have a thickness less than 10μm, and the glass substrate members may each have a thickness approximately between 20μm and 500μm.
Abstract:
An embryonic optical apparatus including a first lens component including a first surface and a second surface on an opposite side of the first lens component from the first surface, and a second lens component comprising a flexible element, wherein the flexible element of the second lens component comprises a first region that is variably movable towards and away from the first surface, thereby dynamically adjusting an optical power of the embryonic optical apparatus with respect to a light path through the first region and the first surface, and wherein the embryonic optical apparatus is configured such that at least a portion of the second surface is permanently alterable to permanently define an optical power of the first lens at at least a second region of the second surface, the second region being optically aligned with the first region, thereby resulting in a prescription-quality ophthalmic optical apparatus.