Abstract:
An electronically switchable privacy film suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low light scattering states upon application of an electric field across the transparent electrodes.
Abstract:
Antireflective film articles and low refractive index coating compositions are described that comprises a fluorinated free-radically polymerizable polymeric (e.g. intermediate) material. The free-radically polymerizable fluorinated polymeric intermediate comprises the reaction product of i) at least one multi-functional free-radically polymerizable material having a fluorine content of at least 25 wt-%, and ii) optionally other multi-functional free-radically polymerizable material. The total amount of multi-functional materials is preferably at least about 25 wt-%.
Abstract:
The invention provides methods of forming a cholesteric liquid crystal layer that include forming a cholesteric liquid crystal composition, depositing the cholesteric liquid crystal composition onto a substrate, and initially drying the cholesteric liquid crystal composition at a temperature at or below about 90 °C so that the cholesteric liquid crystal composition has at least 80 % solids remaining. The invention also provides methods of forming a cholesteric liquid crystal layer that include forming a cholesteric liquid crystal composition, depositing the cholesteric liquid crystal composition onto a substrate, and initially drying the cholesteric liquid crystal composition at a temperature at or below about 90 °C, wherein the drying is accomplished using a technique that provides little or no airflow. The invention further provides a cholesteric liquid crystal composition that includes at least one cholesteric liquid crystal precursor and 1,3-dioxolane.
Abstract:
An electronically switchable privacy films suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low absorption states upon application of an electric field across the transparent electrodes.
Abstract:
The method of making an optical body includes coating a mixture that includes a plurality of cholesteric liquid crystal compositions, and a solvent on a substrate. Each cholesteric liquid crystal composition is different. A plurality of layers is formed on the substrate. Each layer includes a majority of one of the cholesteric liquid crystal compositions.
Abstract:
A transparent electrode is described and includes metallic nanowires and a polymeric overcoat layer for protecting the nanowires from corrosion and abrasion. The polymeric overcoat layer includes nanoparticles selected from the group consisting of antimony tin oxide, zinc oxide and indium tin oxide, and has a sheet resistance of greater than about 107 ohm/sq. The transparent electrode can be used in electronic displays such as polymer- dispersed liquid crystal, liquid crystal, electrophoretic, electrochromic, thermochromic, electroluminescent and plasma displays.
Abstract:
Antireflective films are described having a surface layer (20) comprising the reaction product of a polymerizable low refractive index composition comprising at least one fluorinated free -radically polymerizable material and surface modified inorganic nanoparticles. A high refractive index layer (22) is coupled to the low refractive index layer. The high refractive index (22) layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
Antireflective films are described having a surface layer comprising a the reaction product of a polymerizable low refractive index composition comprising at least one fluorinated free-radically polymerizable material and surface modified inorganic nanoparticles. A high refractive index layer is coupled to the low refractive index layer. In one emboidiment, the high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antireflective film is preferably durable, exhibiting a haze of less than 1.0% after 25 wipes with steel wool using a 3.2 cm mandrel and a mass of 1000 grams.
Abstract:
The method of making an optical body includes coating a mixture that includes a plurality of cholesteric liquid crystal compositions, and a solvent on a substrate. Each cholesteric liquid crystal composition is different. A plurality of layers is formed on the substrate. Each layer includes a majority of one of the cholesteric liquid crystal compositions.
Abstract:
The invention provides a cholesteric liquid crystal composition that includes at least one cholesteric liquid crystal precursor, and at least one non-liquid crystalline additive that is a non-liquid crystalline compound of formula (I). The invention also provides cholesteric liquid crystal films and optical bodies formed from cholesteric liquid crystal compositions of the invention. The invention further provides an optical display that includes a display medium, and a reflective polarizer including a cholesteric liquid crystal composition in accordance with the invention.