Abstract:
An economic, optically transmissive, stain and ink repellent, durable low refractive index fluoropolymer composition for use in an antireflection film or coupled to an optical display. In one aspect of the invention, the composition is formed from the reaction product of a fluoropolymer or reactive fluoropolymer, an amino silane ester coupling agent or ester equivalent, a multi-olefinic crosslinker, and optional surface modified inorganic particles or sol gel precursors.
Abstract:
The present invention concerns microstructured articles comprising nanostructures such an antiglare films, antireflective films, as well as microstructured tools and methods of making microstructured articles.
Abstract:
A multi-layer film for reducing microbial contamination on a surface. The multi-layer film can include a core layer having a first surface and a second surface opposite the first surface, an adhesive layer disposed adjacent the first surface of the core layer, and an antimicrobial layer disposed adjacent the second surface. The antimicrobial layer can include a cross-linked matrix and an antimicrobial agent dispersed within the cross-linked matrix, where the cross-linked matrix is derived from a polymerizable precursor comprising a material selected from the group consisting of a polymerizable monomer, a polymerizable polymer having a molecular weight of about 1,000 or less, and combinations thereof.
Abstract:
A cured coating for a siliceous material, preferably an optical fiber, comprises a thermally cured polyorganosilsesquioxane having an oxide powder dispersed therein. The oxide powder has a refractive index from about 1.2 to about 2.7 and includes particles having a particle size less than about 100 nanometers. The cured coating has adhesion to the siliceous material and is transparent to ultraviolet radiation.
Abstract:
The present invention includes ultraviolet curable compositions preferably containing discrete, crystalline zirconia nanoparticles with reactive, or copolymerizable, surface modification, in a polymerizable monomer/oligomer resin mixture. It is believed that copolymerizable surface modification provides a functional group that enables the functionalized particle to co-polmerize with the reactive monomers, oligomers, and crosslinkers in the formulation. Relative to surface modifation of the nanoparticles, acrylate functionality is preferred over methacrylate functionality. On the other hand, methacrylate functionality is preferred over non-reactive, or nonpolymerizable, functionality. As the nanocomposite cures, the resultant network is heavily crosslinked by selection of raw materials with substantial acrylate functionality.
Abstract:
An economic, optically transmissive, stain and ink repellent, durable low refractive index fluoropolymer composition for use in an antireflection film or coupled to an optical display. In one aspect of the invention, the composition is formed from the reaction product of a fluoropolymer and a fluoroalkyl containing multi-olefinic crosslinker. In another aspect of the invention, the composition further includes surface modified inorganic nanoparticles.
Abstract:
Optical films are described comprising a color shifting film comprising a matte surface layer; and light control microstructured layer disposed proximate the color shifting film. The optical film may comprise a matte layer disposed on a major surface of the color shifting film and the light control microstructured layer disposed on the color shifting film at an interface that is free of adhesive. Alternatively, the optical film may comprise a film stack comprising a light control film having a light control microstructured layer, a color shifting film, and an adhesive layer between the light control film and color shifting film. In some embodiments, the matte layer comprises matte particles. In other embodiments, the matte layer comprises a plurality of microstructures and no greater than 50% of the microstructures comprise embedded matte particles. In some embodiments, the microstructures are substantially free of embedded matte particles.
Abstract:
Presently described are self-assembling antireflective ("AR") coating compositions comprising high refractive index surface modified nanoparticles. Also described are various articles such as protective films, optical displays, and windows, comprising such (e.g. dried and cured) AR coating.
Abstract:
The present invention includes ultraviolet curable compositions preferably containing discrete, crystalline zirconia nanoparticles with reactive, or copolymerizable, surface modification, in a polymerizable monomer/oligomer resin mixture. It is believed that copolymerizable surface modification provides a functional group that enables the functionalized particle to co-polmerize with the reactive monomers, oligomers, and crosslinkers in the formulation. Relative to surface modifation of the nanoparticles, acrylate functionality is preferred over methacrylate functionality. On the other hand, methacrylate functionality is preferred over non-reactive, or nonpolymerizable, functionality. As the nanocomposite cures, the resultant network is heavily crosslinked by selection of raw materials with substantial acrylate functionality.