Abstract:
A laminable shaped glass article includes a flat-surface/curved-surface glass article. A flat-surface/flat-surface glass body is reformed into a curved-surface/curved-surface glass body. One of the curved surfaces of the curved-surface/curved-surface is planarized to form the flat-surface/curved-surface glass article.
Abstract:
The invention relates to glass articles suitable for use as electronic device housing/ enclosure or protective cover which comprise a glass material. Particularly, a housing/enclosure/cover comprising an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa?m ½ ; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm 2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus ranging between about 50 to 100 GPa;; (7) a thermal conductivity of less than 2.0 W/m°C, and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
Abstract:
The invention is directed to a high strength, chemically toughened protective glass article, the glass article having a high damage tolerance threshold of at least 2000g as measured by the lack of initiation of radial cracks when the load is applied to the glass using a Vickers indenter.
Abstract:
Methods of forming bulk optical elements, such as prisms, incorporating gratings are disclosed. Grating structures are formed by etching a uniform-thickness or generally planar substrate. Direct bonding, particularly chemical bonding, is then employed to bond the etched planar substrate to a bulk optical material without the use of adhesives or high temperature fusion.
Abstract:
A method of making a 3D glass article includes forming at least one marker on an edge of a 2D glass piece. The 2D glass piece is thermally reformed into a 3D glass article, where the at least one marker formed on the edge of the 2D glass piece is carried over to an edge of the 3D glass article. The 3D glass article is aligned on a support using the at least one marker on the edge of the 3D glass article. Then, the edge of the 3D glass article is finished to a final shape and dimension.
Abstract:
A print press system and a method are described herein that print an electronic circuit onto a material (e.g., glass substrate, plastic film, plastic film-glass substrate laminate). In exemplary applications, the print press system can print an electronic circuit onto a material to form, for instance, a flexible Liquid Crystal Display, a retail point of purchase sign and an e-book.
Abstract:
The invention is directed to large LCD image masks having a final flatness of less than 40 nm and a method of making such LCD image masks by utilizing subaperture deterministic grinding/lapping /polishing. In one preferred embodiment the final flatness is
Abstract:
A collimator array, a fiber array and a method for fabricating the fiber array are described herein. In one embodiment, that fiber array includes a plurality of optical fibers and a glass plate with a plurality of holes in each of which there is secured one of the optical fibers, wherein the holes were formed by etching away a plurality of opal regions within an exposed and heated photosensitive glass which after the etching became the glass plate. In another embodiment, the fiber array includes a plurality of optical fibers and a glass plate with a plurality of holes in each of which there is secured one of the optical fibers, wherein the holes were formed by etching away a plurality of opal regions within an exposed and heated photosensitive glass which after the etching became the glass plate that included a plurality of oversized holes which were filled with a moldable material that was then drilled to form the holes.
Abstract:
A lens array and a method for fabricating a lens array that is relatively flat and has useful lenses with relatively uniform sag heights are described herein. In one embodiment, the lens array includes a one-dimensional array of useful lenses and two sacrificial lenses each of which is formed next to an end of a row of the useful lenses to help maintain relatively uniform sag heights across the useful lenses. In another embodiment, the lens array includes a two-dimensional array of useful lenses and a plurality of perimeter lenses each of which is formed next to an end of a row or a column of the useful lenses to help maintain relatively uniform sag heights across the useful lenses. In yet another embodiment, the lens array includes an array of useful lenses and a glass region (including possibly a glass matrix) located within an opal border and outside an opal region that surrounds the useful lenses to help minimize warpage of the lens array. In fact, there are many different embodiments of the lens array described herein that incorporate one or more of the aforementioned features.
Abstract:
The invention relates to optical fluoride crystals, and particularly to optical fluoride crystals (20) such as calcium fluoride, which have high transmission levels to below 200nm light, such as produced by excimer lasers. In particular the invention relates to making optical fluoride crystals with improved transmission surfaces (23). The invention relates to the elimination of mid-spatial frequency roughness 1-1000 um spatial wavelengths and high-spatial frequency