Abstract:
An aircraft auxiliary fuel tank system comprising a master tank and a plurality of slave tanks connectable to the master tank. The slave tanks can be easily added or removed to adjust fuel capacity. A rail assembly is provided to assist in the easy installation and removal of the slave and master fuel tanks. Methods are provided for using the auxiliary fuel tanks system and for providing a service for slave tank distribution, reservation and installation.
Abstract:
A system for controlling a magnitude of a sonic boom caused by off-design operation of a supersonic aircraft includes a sensor configured to detect a condition of the supersonic aircraft. The system further includes a control surface that is mounted to a wing of the supersonic aircraft. The system still further includes a processor communicatively coupled to the sensor and operatively coupled with the control surface. The processor is configured to (1) receive information from the sensor indicative of the condition of the supersonic aircraft, (2) determine that there is a deviation between a lift distribution and a design-condition lift distribution based on the information, and (3) control the control surface to move in a manner that reduces the deviation. The magnitude of the sonic boom is reduced when the deviation is reduced.
Abstract:
Methods and systems for controlling a magnitude of a sonic boom caused by off-design-condition operation of a supersonic aircraft at supersonic speeds are disclosed herein. The method includes, but is not limited to, monitoring, with a processor, a weight of the supersonic aircraft and a distribution of fuel onboard the supersonic aircraft. The method further includes, but is not limited to, determining, with the processor, that there is a deviation of the weight of the supersonic aircraft from a design-condition weight. The method still further includes, but is not limited to, controlling, with the processor, a redistribution of the fuel onboard the supersonic aircraft to adjust an amount of fuel stored within a wing to minimize a twist in the wing caused by the deviation. Such redistribution will reduce the magnitude of the sonic boom caused by the deviation.
Abstract:
A fuel monitoring system for automatically monitoring a fuel transfer in an aircraft fuel system, the fuel system including a plurality of fuel tanks (2, 4, 6, 10, 12), the fuel monitoring system comprises a fuel quantity sensor (14) arranged to measure the quantity of fuel in a first fuel tank (10) and a data processor (16) arranged to receive a fuel quantity measurement from the sensor, wherein in response to receiving a command to transfer fuel from the first fuel tank to one or more further fuel tanks (12) the data processor is arranged to determine the rate of change of fuel quantity in the first tank from the received fuel quantity measurement and if the rate of change of fuel quantity is less than a threshold value and the received fuel quantity measurement is greater than an expected value then the data processor is further arranged to provide an output indicating that the commanded fuel transfer has failed.
Abstract:
Fluid sensing systems and methods, including sensors used to sense various fluid levels in vehicles, are disclosed herein. One aspect of the invention is directed toward a method for sensing a fluid that includes passing electromagnetic radiation through a receptacle positioned to hold a fluid. The receptacle can be configured so that electromagnetic radiation that passes through portions of the receptacle containing fluid is focused. The method can further include determining (a) whether fluid is located in a selected portion of the receptacle based on an amount of electromagnetic radiation that impinges on at least one radiation sensor, (b) a characteristic of fluid located in the passageway of the selected portion based on a pattern of the electromagnetic radiation that is created on the at least one radiation sensor, or (c) both (a) and (b).
Abstract:
Fluid sensing systems and methods, including sensors used to sense various fluid levels in vehicles, are disclosed herein. One aspect of the invention is directed toward a method for sensing a fluid that includes passing electromagnetic radiation through a receptacle positioned to hold a fluid. The receptacle can be configured so that electromagnetic radiation that passes through portions of the receptacle containing fluid is focused. The method can further include determining (a) whether fluid is located in a selected portion of the receptacle based on an amount of electromagnetic radiation that impinges on at least one radiation sensor, (b) a characteristic of fluid located in the passageway of the selected portion based on a pattern of the electromagnetic radiation that is created on the at least one radiation sensor, or (c) both (a) and (b).
Abstract:
Method and arrangement for dispersing fuel (62) within a fuel containment system (60) of an aircraft (30) including utilizing a fuel containment system on an aircraft that is located at least partially within a wing (34) of the aircraft and defines a reservoir portion (42) and a remote portion (44). Fuel is pumped during aircraft flight from the reservoir portion to the remote portion at a pumped rate (80), while simultaneously fuel that is contained in the remote portion of the fuel containment system is permitted to drain to the reservoir portion at a drainage rate (82). The drainage rate is less than the pumped rate. A fuel mass (64) is accumulated in the remote portion of the fuel containment system because of a difference between the pumped rate and the drainage rate and as a result, a counteractive moment (49) is induced in the aircraft that is opposingly directed to a lift moment (46) caused by wing-lift (45) during aircraft flight.
Abstract:
Liquid gauging system for liquid in a container includes a plurality of sensors; each of the sensors measuring a respective parameter of the liquid in the container and producing a sensor output related to its measured parameter; there being at least two sensors that measure different parameters of the liquid; and a processor that receives the sensor outputs and determines, based on the sensor outputs, a quantity of the liquid in the container; the processor determining the quantity by executing at least one sensor fusion algorithm that is based on a set of relationships between the measured parameters and the quantity. The gauging system can also include a data fusion process for determining quantity based on a plurality of quantity measurements.
Abstract:
A fuel supply system for an aircraft includes a fuel tank configured to supply fuel to an engine of an aircraft, a boost pump in operational communication with the fuel tank, wherein the boost pump is configured to control at least one of a fuel level and a fuel pressure in the fuel tank, and an electronic controller in communication with the boost pump and configured to control the boost pump. The electronic controller is configured to receive received information including (i) fuel information, (ii) flight information, and (iii) aircraft information, and configured to control the boost pump based on the received information.
Abstract:
La présente invention concerne un procédé de circulation de carburant dans un aéronef, remarquable en ce qu'il consiste à utiliser d'au moins une pompe à membrane ondulante (1) apte à onduler, sous l'action de moyens d'actionnement, entre deux flasques pour faire circuler ledit carburant entre une conduite d'admission (4) de la pompe (1) jusqu'à une conduite d'échappement (5) de la pompe (1).