Abstract:
A radio device may receive network assistance information relating to uplink channel access procedures, such as channel access types and related listen- before-talk techniques, via layer one signaling or higher layer signaling. For example, information may be provided via DCI, MAC CE, or RRC messaging, e.g,, received in a CORESET preceding the configured PRACH resources. Access procedures may be random access procedures, and may include indication via R.AR messaging. Access procedures may be triggered by a radio access point message, such as a PDCCH order or a handover request.
Abstract:
User equipment (UE) in beam-centric telecommunications cell may use a variety of listen-before-talk (LBT) procedures and hybrid channel access procedures for uplink transmissions are on different beams and configured or scheduled in contiguous or non-contiguous mode. UE behavior may be based on the LBT result across the different beams. A gNB may indicate LBT occasions to UEs. The UL numerology may be adjusted without LBT while near the end of a gNB's maximum channel occupancy time (MCOT). A gNB may use LBT procedures, before down link transmissions, using data, control, and reference signals, etc., across different beams.
Abstract:
Methods and systems for uplink transmit power control are disclosed. In a first aspect, methods and systems are disclosed for beam specific uplink transmit power control. In a second aspect, methods and systems are disclosed for uplink transmit power control for a user equipment at an idle or an inactive state. In a third aspect, methods and systems are disclosed for uplink transmit power control for dynamic blocking. In a fourth aspect, methods and systems are disclosed for uplink transmit power control using mixed numerologies and priorities.
Abstract:
The present application is at least directed to an apparatus. The apparatus includes a non- transitory memory including instructions stored thereon for beam link pairing the apparatus to a router in a new radio. The apparatus also includes a processor, operably coupled to the non- transitory memory, capable of executing the instructions of transmitting physical random access channel (PRACH) preambles through a set of uplink transmission beams in a subframe. The processor is also capable of executing the instructions of signaling a beam ID of the set of uplink transmission beams. The processor is further capable of executing the instructions of monitoring a physical downlink control channel (PDCCH) for a random access response (RAR) including a random access radio network temporary identifier (RA-RNTI). The processor is even further capable of executing the instructions of determining the RA-RNTI corresponds to the transmitted PRACH preambles.
Abstract:
It is recognized herein that as the number of transmit antennas in cellular systems (e.g., NR or 5G systems) increase, the Channel State information (CSI) feedback overhead may increase to unacceptable levels, and the current CSI feedback might not support beamforming training for NR. Embodiments described herein provide an enhanced and more efficient design for Channel State Information feedback as compared to current approaches.
Abstract:
The present application is at least directed to an apparatus on a network including a non-transitory memory including instructions stored thereon for beamforming training during an interval in the network. The apparatus also includes a processor, operably coupled to the non-transitory memory, capable of executing the instructions of receiving, from a new radio node, a beamforming training signal and beam identification for each of plural beams during the interval. The processor is also configured to execute the instructions of determining an optimal transmission beam of the new radio node based on the beamforming training signals of the plural beams. The processor is further configured to execute the instructions of transmitting, to the new radio node, a signal including a beam identification of the optimal transmission beam and an identification of the apparatus during the interval. The processor is further configured to execute the instructions of receiving, from the new radio node, an optimal transmission beam for the apparatus including a beam identification based upon a determination from the new radio during the interval.
Abstract:
New radio downlink numerology allocation information may be obtained through master information block data, system information block data, radio resource control signals, or signals or a physical downlink numerology indication channel, and used along with a reference signal detected in a search space to obtain resource element positions in an antenna port reference signal in a resource block that belongs to a particular band slice according to a reference signal allocation scheme for a band slice numerology. A physical downlink control may then be decoded based upon one or more resource elements of the reference signal, allowing the connection of, e.g., an enhanced mobile broadband, massive machine type communication, or ultra-reliable/low-latency application to a communications network thereby. Alternatively, multiple physical downlink control channels may be blindly demodulated at each of a number calculated reference signal locations, and one channel selected based on passing a cyclic redundancy check.
Abstract:
It is recognized herein that current LTE reference signals may be inadequate for future cellular (e.g., New Radio) systems. Configurable reference signals are described herein. The configurable reference signals can support mixed numerologies and different reference signal (RS) functions. Further, reference signals can be configured so as to support beam sweeping and beamforming training.
Abstract:
Hybrid automatic repeat request (HARQ) processes, indicators, and similar methods may be used improve new radio performance in a number of ways. For example HARQ processes may be retransmitted, even before a response is expected, a number of times. Separate acknowledgement may be provided for various code blocks within a single transport block. Multi-bit ACK/NACK signaling may be used to efficiently express the status of individual code blocks or groups of code blocks within a transmission block. Grantless transmissions may be acknowledged implicitly, e.g., via responses comprising downlink control information or sent via a physical hybrid automatic repeat request indicator channel.
Abstract:
A service layer entity (e.g., application entity, common service entity in oneM2M, also referred to as registree entity) may register to another service layer entity (e.g., common service entity in oneM2M, also referred to as a registrar entity) and proactively request to gain access to the local services hosted by the registrar entity. A registrar entity may accept a registree entity's registration request but only grant access of its partial services to the registree entity. If a registree entity does not need to proactively request the services within its registration request message, the registrar entity decides what services may be needed by the registree entity and grants access of those services to the registree entity.