Abstract:
The present invention relates to an all-solid-state battery comprising a mixture layer which comprises a physical mixture of a sulfide-based sodium- containing solid electrolyte material and a sulfide-based lithium-containing solid electrolyte material.
Abstract:
Embodiments described herein relate generally to lithium sulfur batteries and methods of producing the same. As described herein, preventing coarsening of sulfur during the well-known melt-diffusion processing of cathodes allows a high areal capacity of 10.7 mAh/cm 2 at current density of 3.4 mA/cm 2 (C-rate of 1/5 h -1 ). The addition of a lithium salt, such as LiTFSI, prior to melt-diffusion can prevent coarsening of molten sulfur and allows creation of a sulfur electrode with a high concentration of triple-phase junctions for electrochemical reaction. In some embodiments, approximately 60-70% utilization of the theoretical capacity of sulfur is reached at a high loading (e.g., greater than 7.5 mg S/cm2). The electrodes are prepared in lean-electrolyte environment of 3 ml electrolyte/g sulfur (~70 vol% of electrolyte in the electrode) for high areal capacity in Li-S batteries.
Abstract translation:本文所述的实施方案一般涉及锂硫电池及其制备方法。 如本文所述,在公知的阴极熔融扩散处理期间防止硫的粗化允许在3.4mA / cm 2的电流密度(C-rate 1/5h-1)下的10.7mAh / cm 2的高面积容量。 在熔融扩散之前添加锂盐如LiTFSI可以防止熔融硫的粗化,并且允许产生具有高浓度的用于电化学反应的三相接头的硫电极。 在一些实施方案中,在高负荷下(例如,大于7.5mg S / cm 2)达到硫的理论容量的约60-70%的利用率。 电极在Li-S电池中的高电容量的3ml电解质/ g硫(约70体积%的电极中的电解质)的贫电解质环境中制备。
Abstract:
Die Erfindung betrifft einen Separator (18) zur Trennung einer Anode (21) und einer Kathode (22) in einer Batteriezelle(2),welcher ein eine Porosität aufweisendes Grundmaterial umfasst, welches ionisch leitend sein kann. Dabei ist innerhalb des Grundmaterials des Separators (18) eine Elektrolytschicht (15) vorgesehen, welche durch einen Feststoffelektrolyt gebildet ist, und welche eine geringere Porosität als das Grundmaterial des Separators (18) aufweist. Die Erfindung betrifft auch eine Batteriezelle (2),welche mindestens einen erfindungsgemäßen Separator (18) umfasst.
Abstract:
Disclosed are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed.
Abstract:
The present disclosure relates to a battery incorporating a hybrid gel/solid electrolyte. In an example embodiment, a battery may include a copper anode current collector, a lithium metal anode, a lithium phosphorous oxynitride (LiPON) anode protector, an electrolyte, a lithium cobalt oxide (LiCo02) cathode, and an aluminum cathode current collector. The electrolyte may include a gel electrolyte, a solid electrolyte, and a separator. The separator includes an insulating material layer disposed between a first gel electrolyte layer and a second gel electrolyte layer. In some embodiments, the insulating material may include polyethylene and the gel electrolyte layer may include a liquid and a polymer. Alternatively or additionally, (he solid material may include a filler material, which may include silica and a polymer.
Abstract:
A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.