-
公开(公告)号:WO2021253062A1
公开(公告)日:2021-12-23
申请号:PCT/AT2021/060129
申请日:2021-04-19
Applicant: HP3 REAL GMBH
Inventor: LICHTBERGER, Bernhard
IPC: E01B35/00 , B61L23/04 , B61L25/02 , G01B21/30 , G01S19/43 , G01S19/14 , G01S19/51 , B61K9/08 , B61L2205/04 , B61L23/047 , B61L25/025 , E01B35/04 , G01B11/14 , G01B21/02 , G01B21/045 , G01C7/04 , G01S17/88 , G01S19/47 , G01S5/14
Abstract: Es wird ein Verfahren zum Vermessen einer Gleislage mit einem gleisfahrbaren Gleismesswagen (7), wobei eine Messfahrt mit dem gleisfahrbaren Gleismesswagen (7) einer GPS-Antenne (8) und einem RTK-GPS Empfänger (11), der mit einem RTK-Korrekturdatendienst (RTK-KD) kommuniziert, durchgeführt wird, wobei wenigstens ein Rad (10) des Gleismesswagens (7) an eine Schiene (4) angepresst wird, beschrieben. Um ein Verfahren zum Vermessen einer Gleislage unter Berücksichtigung von Randbedingungen wie Zwangslagen, Zwangspunkten und maximal zulässigen Gleislagekorrekturen so weiterzuentwickeln, dass die Nachteile der Driften eines inertialen Messsystems bei langen Messfahrten und die nur Relativangaben der Gleislage vermieden werden, wird vorgeschlagen, dass die Lage der GPS-Antenne (8) bezüglich einer Referenzachse des Gleises (4, 10) mit Hilfe eines Kompensationsscanners (6) und einer Recheneinheit (13) bestimmt und die gemessenen, in kartesische Koordinaten (Pi(xi, yi, zi)) umgerechneten GPS-Koordinaten mit der Recheneinheit (13) als Raumkurve (3) aufgezeichnet werden, aus der das Ortsbild (1), aus dem ein Soll-Krümmungsbild (ksoll) und das Längsbild (2), aus dem ein Soll-Längsneigungsbild (Nsoll) errechnet wird, gebildet werden und dass auf dem Messwagen (7) ein Inertialsystem (INS) aufgebaut ist, mit dem eine Korrekturraumkurve derselben Strecke erstellt, mit der Recheneinheit (13) aufgezeichnet und als Korrekturwert für die in kartesische Koordinaten (Pi(xi, yi, zi)) umgerechneten GPS-Koordinaten herangezogen wird.
-
公开(公告)号:WO2021252638A1
公开(公告)日:2021-12-16
申请号:PCT/US2021/036632
申请日:2021-06-09
Applicant: SWIFT NAVIGATION, INC.
Inventor: GRGICH, Paul , MAZA, Lloyd , BROCARD, Philippe
Abstract: A method and system for determining a receiver position comprising receiving satellite observations from a set of satellites, determining differenced observations based on the satellite observations, determining an all-in-view position of the receiver based on the differenced observations, determining a set of fault modes each associated with a subset of the differenced observations, for a fault mode of the set of fault modes, determining a fault-tolerant position of the receiver using the subset of differenced observations associated with the fault mode, when the all-in-view position and the fault tolerant position of the receiver for each fault mode are within a solution separation threshold, calculating a protection level associated with the all-in-view position of the receiver.
-
公开(公告)号:WO2021199243A1
公开(公告)日:2021-10-07
申请号:PCT/JP2020/014749
申请日:2020-03-31
Applicant: 株式会社ナイルワークス
IPC: G01S19/43
Abstract: 【課題】 基地局の座標の測位精度を向上させる。 【解決手段】少なくともドローン100の相対測位に用いる基地局404の座標を測位する測位システム1000であって、互いに異なる少なくとも2個の基準点D1、D2をそれぞれ基準として、基地局の位置を示す第1座標値および第2座標値を算出する座標取得部620と、第1座標値と第2座標値との差分又は距離を計算する比較部630と、差分が所定値以下であるとき、第1座標値、もしくは前記第1座標値と前記第2座標値の間に位置する点の座標値を、基地局の測位座標として確定する、座標確定部640と、を備える。
-
公开(公告)号:WO2021176308A1
公开(公告)日:2021-09-10
申请号:PCT/IB2021/051586
申请日:2021-02-26
Applicant: MAGELLAN SYSTEMS JAPAN, INC.
Inventor: KISHIMOTO, Nobuhiro
Abstract: Outdoor positioning for a plurality of mobile terminals (20) is performed using an indoor positioning system including a plurality of base stations (10), by installing the plurality of base stations on respective outdoor locations in an outdoor area, where the base stations are configured to use a predetermined communications link for indoor positioning at indoor locations, performing independent precise positioning at each of the plurality of base stations using a plurality of GNSS signals, thereby determining a precise position of the outdoor location of each base station without surveying or measuring the installed location thereof, and performing outdoor positioning of the plurality of mobile terminals in the outdoor area using the determined precise position of each of the plurality of base stations in a same manner as the indoor positioning, by receiving, at the plurality of base stations, signals from the respective mobile terminals via the predetermined communications link.
-
公开(公告)号:WO2021087727A1
公开(公告)日:2021-05-14
申请号:PCT/CN2019/115593
申请日:2019-11-05
Applicant: 深圳市大疆创新科技有限公司
Inventor: 王建民
Abstract: 提供一种定位方法、系统(10)、遥控设备(12)及RTK模块(14),系统(10)包括RTK模块(14)与遥控设备(12),在RTK模块(14)与遥控设备(12)处于连接状态的情况下,可以利用遥控设备(12)向RTK模块(14)发送定位差分数据(202),RTK模块(14)获取卫星定位数据和定位差分数据,并根据卫星定位数据和定位差分数据确定RTK模块(14)的地理位置信息(204)。为此,采用该定位方法可以达到厘米级别的定位,保证整个作业过程中的精度误差保持在厘米级别,达到精准作业的需求。并且,将RTK模块(14)与遥控设备(12)配合使用,体积小巧、方便使用、且成本低。
-
公开(公告)号:WO2020141357A1
公开(公告)日:2020-07-09
申请号:PCT/IB2019/050800
申请日:2019-01-31
Applicant: MAGELLAN SYSTEMS JAPAN, INC.
Inventor: KISHIMOTO, Nobuhiro
Abstract: A reference station includes a GNSS antenna configured to receive a plurality of GNSS signals and a GNSS receiver including a positioning processor, a signal processor, and a signal transmitter. The positioning processor calculates a current position of the reference station based on received GNSS signals without using position information of another reference station, and thus the reference station can be independently installed at a desirable location without surveying or measuring the desirable location. The signal processer generates error correction information in a predetermined data format such as RTCM or CMR, based on the received GNSS signals, where the error correction information includes the current position of the reference station. The signal transmitter transmits the error correction information via a communication link, whereby rovers can perform centimeter-level RTK positioning using the error correction information from the reference station including the current position of the reference station.
-
公开(公告)号:WO2020132989A1
公开(公告)日:2020-07-02
申请号:PCT/CN2018/124042
申请日:2018-12-26
Applicant: 深圳市大疆创新科技有限公司
IPC: G01S19/43
Abstract: 一种数据处理方法、控制设备、系统及存储介质,其中,该方法包括:接收基站在所述飞行器的飞行过程中发送的定位差分数据;存储所述定位差分数据,以使后处理设备能够调用所述定位差分数据并结合所述飞行器的原始定位数据确定所述飞行器在目标时刻的目标定位数据。通过这种方式,确保了所述基站的定位差分数据和飞行器的原始定位数据的精确度,以便提高后处理设备基于所述定位差分数据和所述原始定位数据对飞行器进行定位的有效性和可靠性。
-
公开(公告)号:WO2020124509A1
公开(公告)日:2020-06-25
申请号:PCT/CN2018/122451
申请日:2018-12-20
Applicant: 深圳市大疆创新科技有限公司
IPC: G01S19/43
Abstract: 一种打点定位的方法、装置、系统以及计算机可读存储介质。在该方法中:接收第一全球导航卫星系统(Global Navigation Satellite System,GNSS)差分数据和定位基站的绝对定位数据,向定位移动站(204)发送所述第一GNSS差分数据和定位基站的绝对定位数据,以使得所述定位移动站(204)根据所述定位移动站(204)的第二GNSS差分数据以及所述第一GNSS差分数据和定位基站的绝对定位数据确定所述定位移动站(204)的打点定位数据。实现对无人机进行打点定位。
-
公开(公告)号:WO2020117699A1
公开(公告)日:2020-06-11
申请号:PCT/US2019/064051
申请日:2019-12-02
Applicant: MTD PRODUCTS INC
Inventor: CHANG, Her-Jye
Abstract: A method for autonomous mower (110) navigation includes performing a training operation for an area including identifying a GPS signal associated with a training apparatus, iteratively recording data associated geolocations of the training apparatus as the training apparatus moves along a trajectory through the area, smoothing the geolocation data associated with the trajectory, and storing the smoothed geolocation data. The method can include subsequent to the training operation, performing a greens association process including establishing a link between the autonomous mower and an RTK-GPS base, receiving by the autonomous mower correction data from the RTK-GPS base (102), and determining an approach angle to a work area, wherein the path the autonomous mower travels to the work zone is defined by the approach angle.
-
公开(公告)号:WO2020104594A1
公开(公告)日:2020-05-28
申请号:PCT/EP2019/082099
申请日:2019-11-21
Applicant: SEPTENTRIO N.V.
Inventor: DE WILDE, Wim , SLEEWAEGEN, Jean-Marie
Abstract: The invention pertains to a method for recreating unavailable measurements in a GNSS system by producing at least one GNSS parameter estimate Formula (I) at a target carrier frequency ( f k ), the method comprising at least one of: deriving (1030), from one or more available pseudorange measurements (P i ) at respective other carrier frequencies ( f i ), a pseudorange estimate Formula (II) at said target carrier frequency ( f k ) and deriving (1040), from said one or more available pseudorange measurements (P i ) and one or more available carrier phase measurements (φ i ) at said respective other carrier frequencies ( f i ), a carrier phase estimate Formula (III) at said target carrier frequency ( f k ).
-
-
-
-
-
-
-
-
-