Abstract:
Embodiments relate to a location server, a wireless device and methods performed therein for positioning the wireless device. The wireless device (120) is arranged to perform measurements associated to estimating the position of the wireless device (120),5 wherein the wireless device (120) is configured to: perform a code phase measurement on a satellite signal between a satellite and the wireless device (120), wherein the code phase measurement indicates a number of cycles of a code phase of the satellite signal, the number comprising a first integer part and a first fractional part; perform a carrier phase measurement on the first fractional part; and send to a location server (130) a 10 report of the code phase measurement and the carrier phase measurement, forestimating the position of the wireless device (120).
Abstract:
An example of a method of determining a position of a device includes: receiving, with a receiver of the device, a signal from a reference emitter; obtaining a code phase measurement of the signal; obtaining a carrier phase measurement of the signal; calculating an intermediate quantity that is a function of the code phase measurement and the carrier phase measurement; calculating a carrier phase smoothed estimate of a code phase of the signal based, at least in part, on a robust aggregation of the intermediate quantity; and determining the position of the device based, at least in part, on the carrier phase smoothed estimate of the code phase.
Abstract:
Two wireless signals are received from transmitters in different locations transmitting at different frequencies. Phase information from the two signals is gathered for use in positioning and/or timing calculations. Calibration information is preferably also gathered to support the calculations. Information about the rate of change of phase may be gathered for use in velocity and timing drift calculations. The transmitters may be stations in a wireless infrastructure network. Assistance information may be gathered and shared to support the interception of uplink/downlink signals from the stations. Also disclosed are User Equipment, Base Stations, remote supporting services, elliptic hyperbolic relationships for interpreting and using the spatial variation of the phase difference, and positioning engines for use in the system.
Abstract:
A satellite navigation receiver and associated methods are described that can provide improved integer ambiguity resolution and more accurate positioning information. A modified BIE process (307) may be utilized to enable the receiver to perform the integer ambiguity resolution more optimally. The output of the modified BIE process may be time-domain smoothed (308) to provide a solution which is smoother in ambiguity space, and therefore also provide a position solution that is smoother in time. Transitions between an ambiguity-determined solution to a float solution, when necessary, may be smoothed in time. A weighting scheme (310) may dynamically blend the ambiguity-determined solution and the float solution to leverage the advantages of both solutions, such as faster pull-in, higher accuracy, and more stable and smooth performance.
Abstract:
Procédé de positionnement ferroviaire, à partir du déplacement d'un train déterminé par un récepteur de signaux d'un système de navigation par satellites embarqué à bord du train, et du déplacement dudit train déterminé par un odomètre embarqué à bord du train et une cartographie des voies ferroviaires, par détermination du biais de propagation ionosphérique correspondant à un biais de propagation de la phase de porteuse de signaux du système de navigation par satellites, comprenant les étapes consistant à, par axe à vue des satellites du système de navigation : - estimer la dérive ionosphérique biaisée par différence entre un terme de Doppler intégré déterminé par le récepteur et une estimation biaisée du déplacement du train par l'odomètre; - estimer le biais de dérive odométrique et le biais de dérive de l'horloge locale du récepteur, par résolution par moindres carrés de la vitesse déterminée par le système de navigation par satellites, du biais de dérive de l'horloge locale du récepteur, et du biais de dérive odométrique; - corriger l'estimation de la dérive ionosphérique, par soustraction du biais de dérive odométrique estimé; et - corriger le terme de Doppler intégré par le biais de dérive de l'horloge locale du récepteur et de dérive ionosphérique, et corriger les écarts de pseudo-distance par le biais de dérive ionosphérique.