Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations and/or techniques for enhanced passive positioning with adaptive round trip time (RTT)-type ranging, such as for use in or with a mobile communication device, for example.
Abstract:
Methods and apparatus for processing positioning assistance data are provided. An exemplary method includes receiving, from a positioning server, virtual access point (VAP) data including a list of unique identifiers, and determining a location of a mobile device by using the VAP. The VAP data indicates that the unique identifiers included on the list identify signals originating from the same physical access point. The unique identifiers can be MAC addresses. In an example, the location determining the can include actively scanning a signal identified by a unique identifier on the list and not actively scanning a different signal identified by a different unique identifier also on the list. Not scanning the other MAC addresses that are on the access point's list and assigned to the mobile device keeps the mobile device from performing duplicative scanning that wastes time, processor cycles, and energy.
Abstract:
Techniques are provided for providing a processing delay estimate of an access point, or turnaround calibration function (TCF), associated with round trip time (RTT) measurements. Mobile devices, access points, and/or other systems can utilize these techniques to derive processing delay from the RTT measurements. Crowdsourcing can also be used to help increase the accuracy of the processing delay estimate, which can be propagated to multiple devices.
Abstract:
Disclosed are devices, systems and methods for processing satellite positioning system (SPS) signals for performing positioning operations. In particular, devices, systems disclosed herein are directed to determining estimates of undifferenced ambiguity values of a plurality of received SPS signals; and solving for a time based, at least in part, on the estimates of undifferenced ambiguity values.
Abstract:
The disclosure generally relates to position sensors, and more particularly to outlier detection using spatial displacement data. An apparatus for use in position sensing may include a displacement sensor, a positioning signal receiver having a receiver clock, a memory, and a processor coupled to the displacement sensor, the positioning signal receiver, and the memory. The processor and memory may be configured to calculate a change in a receiver clock bias of the receiver clock based on range measurements and spatial-based displacement data, propagate a first range measurement based, at least in part, on the spatial-based displacement data and the change in the receiver clock bias, and determine an outlier range measurement based, at least in part, on the propagated first range measurement.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining locations of access points (AP) are presented. Techniques are described for determining relative and absolute locations of APs. In one embodiment, a device may send and receive messages to one or more APs for from various locations for determining the distance between the device and the AP. The device may additionally keep track of its own displacement for the purposes of determining the location of the one or more APs. In one embodiment, the device also determines the turnaround calibration factor (TCF) for the AP that compensates for the processing time at the AP may also be used for increasing the accuracy of the determination of the location of the AP.
Abstract:
Determining a position of a device using a signal received from a reference emitter includes: receiving the signa (80)l; determining a state of a first filter (81), the state of the first filter including a first carrier phase ambiguity estimate that includes a floating value; determining a state of a second filter (82), the state of the second filter including a second carrier phase ambiguity estimate that includes a fixed value; determining whether the state of the second filter is consistent with one other filter state or measurement (83); maintaining the state of the second filter in response to the device determining that the state of the second filter is consistent with the other filter state (84); changing the state of the second filter to the state of the first filter in response to the device determining that the state of the second filter is not consistent with the other filter state (85); determining the position of the device based on the state of the second filter (86).
Abstract:
Disclosed embodiments pertain to a method on a UE may comprise determining a first absolute position of the UE at a first time based on GNSS measurements from a set of satellites. At a second time subsequent to the first time, the UE may determine a first estimate of displacement of the UE relative to the first absolute position using non-GNSS measurements. Further, at the second time, the UE may also determine a second estimate of displacement relative to the first absolute position and/or a second absolute position of the UE based, in part, on: the GNSS carrier phase measurements at the first time from the set of satellites, and GNSS carrier phase measurements at the second time from a subset comprising two or more satellites of the set of satellites, and the first estimate of displacement of the UE.
Abstract:
Disclosed are systems, apparatus, devices, methods, media, products, and other implementations, including a method that includes determining, at a first wireless device comprising multiple transmit antennas, at least one signal transmission characteristic according to at least one pre-determined varying transmission characteristic determination process. The at least one transmission characteristic includes, for example, a transmit antenna selected from the multiple transmit antennas, a beam characteristic, a cyclic delay diversity parameter, and/or any combination thereof. The method also includes transmitting from the first wireless device to a second wireless device a signal using the at least one signal transmission characteristic determined according to the at least one pre-determined varying transmission characteristic determination process. The transmitted signal is configured to facilitate position determination of the second wireless device upon deriving at the second wireless device a reconstructed value of the at least one signal transmission characteristic determined at the first wireless device.
Abstract:
Disclosed are systems, apparatus, devices, methods, computer program products, and other implementations, including a method of controlling navigation tasks on a mobile device that includes obtaining data representative of a route of travel for the mobile device, obtaining a list of navigation tasks associated with the route of travel for the mobile device, and performing one or more navigation tasks in accordance with the list of navigation tasks based, at least in part, on proximity of the mobile device to one or more points on the route of travel. Performing the one or more navigation tasks includes one or more of, for example, obtaining satellite positioning assistance data in response to a determination that the mobile device is transitioning from an indoor area to an outdoor area, and/or establishing a communication link with an access point.