Abstract:
A method of reducing packet loss resulting from header compression during data transmission comprising of calculating, by a transmitter, the difference between one or more delta fields of each packet among a plurality of packets and a base frame of data wherein for at least a portion of the packets, the base frame is a packet other than a packet immediately preceding the packet for which the difference is calculated, encoding the difference and compressing the plurality of packets using the transmitter; transmitting, using the transmitter, the plurality of compressed packets and an uncompressed full-header packet through a communications channel to a receiver, receiving the plurality of compressed packets and the uncompressed full-header packet by the receiver, and decompressing, by the receiver, the plurality of compressed packets using the difference between the one or more delta fields of each packet among the plurality of compressed packets and the base frame.
Abstract:
A custom- fitted helmet and a method of making the same can comprise, at a first location, obtaining head data for a customer's head comprising a length, a width, and at least one head contour. With at least one processor, generating a computerized three-dimensional (3D) headform matching the customer's head length, width, and head contour from the head data. The 3D headform can be compared to a helmet safety standard. At a second location different from the first location, a custom- fitted helmet based on the 3D headform can be formed, wherein the custom-fitted helmet satisfies the safety standard and comprises an inner surface comprising a topography that conforms to the length, width, and at least one contour of the customer's head. The first location can be a home or a store. Obtaining the head data from photographic images of a deformable interface member disposed on the customer's head.
Abstract:
A helmet that can comprise a helmet body comprising an energy absorption layer and an outer shell, A first opening can be formed through the outer shell and extend into the energy absorbing layer, the first opening comprising a perimeter. A first sleeve can be disposed at least partially within the first opening, the first sleeve comprising a first end comprising a first flange coupled to the outer shell and extending beyond the perimeter of the first opening, and a second end opposite the first end comprising a base disposed over the energy absorption layer, A camera can be coupled to the first sleeve and exposed through the first opening. The helmet can further comprise the first sleeve comprising a depth greater than a width or a length. The first flange can be directly coupled to an outer surface or an inner of the outer shell.
Abstract:
A plurality of approaches for forming a semiconductor device using an adaptive patterning method some approaches including placing a semiconductor die unit on a carrier element, calculating trace geometry for a second set of traces, constructing a prestratum comprising a first set of traces, and constructing the second set of traces according to the calculated trace geometry. Forming the semiconductor device may further include electrically connecting at least one of the first set of traces to at least one of the second set of traces, and electrically connecting at least one bond pad of the semiconductor die unit to a destination pad through the at least one of the first set of traces and the at least one of the second set of traces.
Abstract:
A method of searching for candidate codewords for a telecommunications system, the method comprising receiving a sequence of constellation points, producing a received FEC vector comprised of bits from the received constellation points, comparing the received FEC vector with a plurality of candidate codewords within a Dorsch decoding process using an ordered pattern, and terminating the search when a candidate codeword from among the plurality of candidate codewords is found residing within a predetermined range of a specified distance of the received FEC vector.
Abstract:
A method for remotely and dynamically controlling adjacent satellite interference comprising monitoring one or more off-axis signals emitted by one or more remote transmitters; determining whether one or more of the off-axis signals is creating adjacent satellite interference (ASI), off axis emissions and inband interference that is higher than a predetermined level of acceptable interference, and transmitting a control signal to at least one of the one or more remote transmitters in response to the determination that the one or more off-axis signals is creating interference that is higher than the predetermined level of acceptable interference, the control signal initiating an adjustment to one or more transmission parameters of the one or more remote transmitters such that interference resulting from the one or more off-axis signals emitted by the one or more remote transmitters is reduced or eliminated.
Abstract:
A communication method for embedding a meta-carrier under an original carrier signal with reduced or minimal original carrier signal degradation, the method comprising transmitting an original carrier signal and transmitting a meta-carrier signal separate from the original carrier signal, wherein the meta-carrier signal contains information about an original carrier signal, is extractable under an interfered condition, and is transmitted such that the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier signal.
Abstract:
A non-metallic armor article comprises a pultruded housing defining at least one cavity. A plurality of substantially dry ballistic impact resistant broad goods sheets are at least partially enclosed in the cavity and held in suspension independently within the cavity. The pultruded housing is engaged with the plurality of substantially dry ballistic impact resistant broad goods sheets by being secured to one or more of the plurality of substantially dry ballistic impact resistant broad goods sheets.
Abstract:
A resonant optical cavity ellipsometer system is provided. The system can be used to conduct time- dependent and sensitive measurement of ellipsometric parameters of matter. In a particular use, the system can provide time resolution of better than 1 microsecond. In a particular implementation, matter can be probed within the evanescent wave generated by intra- cavity total reflection.
Abstract:
In one aspect, tool organizer system has a flat sheet of magnetically attracted material that attracts magnets attached to tools to support the tools on the flat sheet. The system includes position indicators that can be attached at any orientation and position on the flat sheet. Neither the position indicators nor the tools are limited to particular positions or orientations such as by a repeating or incremental support structure on the flat sheet. Thus, the position indicators and tools can be grouped in closely abutting relation when desired for space saving organization. The system can be provided as a kit with one or more components. In another aspect, a method of organizing a set of tools provides for efficient use of space on an open flat sheet, provides for clear association between a tool and a previously selected position on the flat sheet, and avoids loss of tools by placing them in previously selected positions.