Abstract:
With the introduction of orthogonal frequency division multiplexing (OFDM) technology in to communication channels in a cable network, cable modems that receive data downstream over subcarriers of the OFDM channel are grouped in to modulation tiers based on at least one metric. A profile is generated for each OFDM channel based on the measurements across cable modems and subcarriers related to the OFDM channel, including the metric values used to group the cable modems in to the modulation tiers. Included in an OFDM profile may be a scheme for allocating marginal cable modems in to the plurality of modulation tiers. The methods and systems for generating modulation and coding scheme profiles enable more efficient modulation by network elements.
Abstract:
Combining network and client based adaptive streaming approaches enable a distributed and adaptive resource management system for carrier quality video transmission over cable Wi-Fi systems. The adaptive resource management over cable Wi-Fi heterogeneous networks includes a network based approach using client based feedback. The resource management of a video stream is performed on a service providers network, for example in a cable modem termination system, by evaluating a margin and a fairness index. In embodiments, the rate of a video stream to a requesting client is adjusted and, in embodiments, the rate of a video stream for non-requesting clients is adjusted. Embodiments include mechanisms for call admission control and adaptive streaming based on adjustable resource margins and fairness indices for DOCSIS and Wi-Fi hetnet systems.
Abstract:
A method and apparatus for displaying data associated with a first application and data associated with a second application on a portable computing are disclosed. Data from physical and virtual sensors is captured and used to determine a context vector. The context vector may provide information about portable computing device usage. Application modes associated with the context vector by the first application and by the second application are identified in addition to a container mode associated with the context vector by a display container. In one embodiment, the display container is a virtual display space used to identify and describe data for display on a display device. A display configuration is determined form the application modes associated with the context vector and the container mode associated with the context vector and used to display data on a display device.
Abstract:
A source device and method for authenticating a sink device. The source device and method include detecting when the sink device connects to a communication interface and in response to detecting a connected sink device, activating a sink device authentication protocol which authenticates whether the connected sink device is an approved sink device for connecting via the communication interface. The source device determines a level of authentication of the connected sink device from among a first-level authentication and a second-level authentication based on first and second authentication components, respectively derived from different master keys, which affects the type of content provided to the sink device. Responsive to the level of authentication provided through the connected sink device, modifying the content transmitted to the connected sink device, and preventing transfer of any content from the source device to the sink device in response to the sink device not being authenticated.
Abstract:
In some embodiments, a method sets a threshold over a frequency spectrum and receives a set of measurements that measures interference between a set of network devices over the frequency spectrum. A set of metric values based on the set of measurements is compared to the threshold at a plurality of points over the frequency spectrum. The method then selects whether the set of network devices are in a group that interfere with communications of each other based on the comparing.
Abstract:
In one embodiment, a first group of splitters receives a group of signals from a group of transmitters. Each splitter in the first group of splitters splits a signal into a plurality of signals that are sent to a plurality of multiplexers. A multiplexer in the plurality of multiplexers receives one of the plurality of signals from each splitter in the group of splitters and multiplexes the received one of the plurality of signals into a multiplexed signal. The multiplexer sends the multiplexed signal through a single connection in which upstream signals are sent to a group of nodes and downstream signals are received from the group of nodes. A de-multiplexer de-multiplexes the multiplexed signal into the group of signals and sends the group of signals to the group of nodes via a second group of splitters that are connected to the group of nodes.
Abstract:
A method of decoding JVET video includes receiving a bitstream indicating how a coding tree unit was partitioned into coding units, and parsing said bitstream to generate at least one predictor based on an intra prediction mode signaled in the bitstream. The predictor may be generated by interpolating neighboring pixels for each pixel within a coding block. The computation may be more accurate by deriving a value for a bottom right neighboring pixel.
Abstract:
Particular embodiments use the segmented bandwidth in downstream channels and upstream channels to manage a narrowcast service for subscribers. Particular embodiments include a channel manager that can process the signal from the headend to down-convert and filter narrowcast services that are sent in one or more of the downstream channels. Also, in the upstream direction, the channel manager can up-convert and stack narrowcast signals for sending to the headend. Further, in one embodiment, the narrowcast service may be provided using visible light communication (e.g., Li-Fi). Using visible light communication may overcome the last connection restrictions described in the background, such as end to end optical connections may be used. Further, using visible light communication may not interfere with other Wi-Fi links in the subscriber premises, such as existing MoCA connections, and may actually enhance the service at the subscriber premises.
Abstract:
A method of decoding JVET video, comprising receiving a bitstream indicating how a coding tree unit was partitioned into coding units according to a partitioning structure that allows nodes to be split according to a partitioning technique. An intra direction mode for a coding unit may be selected, as well as one or more of the plurality of reference lines to generate at least one predictor for the intra direction mode. A predictor may be generated from reference samples within each selected reference line by combining predicted pixel values based on a projected position on a main reference line in combination with predicted pixel values based on a projected position on a side reference line. The predicted pixel values are weighted according to a weight parameter, wherein the weight parameter is determined based on a shift conversion factor.
Abstract:
A method of partitioning in video coding for JVET, comprising representing a JVET coding tree unit as a root node in a quadtree plus binary tree (QTBT) structure that can have quadtree, ternary, or binary partitioning of the root node and quadtree, ternary, or binary trees branching from each of the leaf nodes. The partitioning at any depth can use asymmetric binary partitioning to split a child node represented by a leaf node into two or three child nodes of unequal size, representing the child nodes as leaf nodes in a binary tree branching from the parent leaf node and coding the child nodes represented by final leaf nodes of the binary tree with JVET, wherein further partitioning of child nodes split from leaf nodes via asymmetric binary partitioning may be restricted depending on the partitioning type of the parent node.