Abstract:
Methods and device for treating or healing an injured tendon or ligament is disclosed. The device, a tendon and ligament repair sheet (1), has a porous layer (2) and a denser layer (3), and optionally a therapeutic agent in the porous layer, the denser layer or both. The repair sheet is made from a resorbable or non-resorbable polymer. The repair sheet is securely attached to the injured tendon, ligament, muscle, or bone and has a suture pull out strength of at least 3N. If the injury involve severing of a ligament or tendon, one should place the severed ends in close proximity to each other and securely attach the repair sheet to both sides of the severed tendon or ligament at a distance from the injury so that the repair sheet remains securely attached to the tendon, ligament, muscle, or bone while the tissue is healing.
Abstract:
Methods of inducing the expression of a proteoglycan such as aggrecan in a cell are described. A method is described which includes transfecting a cell with an isolated nucleic acid comprising a nucleotide sequence encoding a LIM mineralization protein operably linked to a promoter. The LIM mineralization protein can be rLMP, hLMP-1, hLMP-1s, or hLMP-3. Transfection maybe accomplishedex vivo or in vivo by direct injection of virus or naked DNA, or by a nonviral vector such as a plasmid. The method can be used to induce proteoglycan synthesis in osseous cells or to stimulate proteoglycan and/or collagen production in cells capable of producing proteoglycan and/or collagen (e.g., intervertebral disc cells including cells of the nucleus pulposus and annulus fibrosus).
Abstract:
Methods of inducing the expression of a proteoglycan such as aggrecan in a cell are described. A method is described which includes transfecting a cell with an isolated nucleic acid comprising a nucleotide sequence encoding a LIM mineralization protein operably linked to a promoter. The LIM mineralization protein can be rLMP, hLMP-1, hLMP-1s, or hLMP-3. Transfection maybe accomplishedex vivo or in vivo by direct injection of virus or naked DNA, or by a nonviral vector such as a plasmid. The method can be used to induce proteoglycan synthesis in osseous cells or to stimulate proteoglycan and/or collagen production in cells capable of producing proteoglycan and/or collagen (e.g., intervertebral disc cells including cells of the nucleus pulposus and annulus fibrosus).
Abstract:
A composition is provided for faster bone repair and early orthopedic implant fixation. The composition comprises an osteoinductive or osteopromotive biological factor embedded in a carrier slurry. The slurry is prepared by wetting a biodegradable polymer and calcium phosphate particles with a biocompatible fluid. The composition may be applied to the site of the bone fracture, to an orthopedic implant or to both during the surgical procedure. The composition utilizes low dosages of the biological factor and, therefore, is cost effective to be used routinely.
Abstract:
The present invention relates to the design and composition of a depot implant for optimal delivery of growth factors to treat osteoporotic bone, in that such depot implant is constructed to be in a cylinder (rod) or sphere shape and have a natural or synthetic polymer scaffold with or without impregnated calcium phosphate particles. The density of the depot is higher than a typical BMP sponge carrier to facilitate it's implantation and slower release of the growth factor. The scaffold is such that it has adequate porosity and pore size to facilitate growth factor seeding and diffusion throughout the whole of the bone structure resulting in increased bone mineral density in the osteoporotic bone. In addition, the shape of the depot implant allows for delivery through a cannula or large bore needle.
Abstract:
Methods and compositions for treating soft tissue defects are provided. The composition, which is injectable directly into the tissue adjacent to the defect, comprises a fibrosis inducing factor in a carrier. The method includes preparing the composition comprising a fibrosis inducing factor in a carrier and delivering the composition into the tissue adjacent to the defect. Alternatively, a carrier matrix may be disposed in or near the defect, a pump capable of delivering an effective amount of a fibrosis inducing factor may be provided, and the pump is fluidly connected to the carrier matrix.
Abstract:
Methods of expressing LIM mineralization protein in mammalian cells are described. Methods of expressing LIM mineralization protein and assessing glycosylation of the LIM mineralization protein in prokaryotic and non-mammalian eukaryotic cells are also described. The methods involve transfecting the cells with an isolated nucleic acid comprising a nucleotide sequence encoding a LIM mineralization protein. Transfection may be accomplished in vitro, ex vivo or in vivo by direct injection of virus or naked DNA, or by a nonviral vector such as a plasmid.
Abstract:
Described is a medical device in the form of a thin sheet having granules of a calcium-containing, osteoconductive material interconnected by a thin web of polymeric material. The device includes a first face and a second face, wherein at least the first face is populated with proturbances presenting exposed regions of the calcium-containing, osteoconductive material provided by underlying granules. Methods of making and using such devices are also described, as are methods and devices involving the use of very thin polymeric sheets conformed to bone-ingrowth surfaces of load-bearing orthopedic implants.
Abstract:
The invention provides compositions, kits, and methods for treatment of neuronal injury. In one embodiment, the composition comprises a biomembrane sealing agent, such as PEG, and a bioactive agent, such as a magnesium compound. The biomembrane sealing agent and/or the bioactive agent may be delivered by a method selected from the group consisting of an intravenous administration, an intramuscular administration, an intrathecal administration, a subcutaneous administration, an epidural administration, a parenteral administration, a direct application onto or adjacent to a site of the pathological condition, and any combinations thereof. Alternatively, the biomembrane sealing agent and/or the bioactive agent may be delivered from a pump or an implant.
Abstract:
The present invention relates to novel drug depot implant designs for optimal delivery of therapeutic agents to subjects. The invention provides a method for alleviating pain associated with neuromuscular or skeletal injury or inflammation by targeted delivery of one or more therapeutic agents to inhibit the inflammatory response which ultimately causes acute or chronic pain. Controlled and directed delivery can be provided by drug depot implants, comprising therapeutic agents, specifically designed to deliver the therapeutic agent to the desired location by facilitating their implantation, minimizing their migration from the desired tissue location, and without disrupting normal joint and soft tissue movement.