Abstract:
Targeting constructs and methods of using them are provided for differentiation- dependent modification of nucleic acid sequences in cells and in non-human animals. Targeting constructs comprising a promoter operably linked to a recombinase are provided, wherein the promoter drives transcription of the recombinase in an differentiated cell but not an undifferentiated cell. Promoters include Blimpi, Prm1, Gataδ, Gata4, Igf2, Lhx2, Lhx5, and Pax3. Targeting constructs with a cassette flanked on both sides by recombinase sites can be removed using a recombinase gene operably linked to a 3'-UTR that comprises a recognition site for an miRNA that is transcribed in undifferentiated cells but not in differentiated cells. The constructs may be included in targeting vectors, and can be used to automatically modify or excise a selection cassette from an ES cell, a non-human embryo, or a non-human animal.
Abstract:
Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus comprising a V30M mutation and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human TTR protein or a chimeric TTR protein, fragments of which are from human TTR. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR.
Abstract:
Nucleic acid constructs and compositions that allow insertion and/or expression of a retinoschisin coding sequence are provided. Nuclease agents targeting RS1 loci are provided. Compositions and methods of using such constructs for integration into a target genomic locus and/or expression in a cell are also provided. Methods of treating X‐linked juvenile retinoschisis using the nucleic acid constructs and compositions are also provided.
Abstract:
Methods and compositions are provided for assessing CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring CRISPR/Cas-induced repair of a coding sequence for a catalytically inactive reporter protein through recombination with an exogenous donor nucleic acid. Methods and compositions are also provided for making and using these non-human animals.
Abstract:
Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
Abstract:
Genetically modified non-human animals are provided that exhibit a functional lack of one or more lncRNAs. Methods and compositions for disrupting, deleting, and/or replacing lncRNA-encoding sequences are provided. Genetically modified mice that age prematurely are provided. Also provided are cells, tissues and embryos that are genetically modified to comprise a loss-of-function of one or more lncRNAs.